Cargando…

Comparison of Biochemical Parameters between Mouse Model and Human after Paraquat Poisoning

BACKGROUND: This study was designed to investigate differences in biochemical parameters between mouse and humans after paraquat (PQ) poisoning and develop a suitable animal model for studying organ damage after PQ poisoning. The prognostic factors of PQ-poisoned patients were further analyzed. METH...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Jielun, Zhang, Lichun, Li, Xiaoshuang, Lv, Kaixuan, Sun, Shiyu, Wu, Weihua, Ping, Lifeng, Guo, Guifang, Tan, Wei, Guo, Shoudong, Wang, Kezhou, Zhao, Aihua, Yang, Nana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8816545/
https://www.ncbi.nlm.nih.gov/pubmed/35127936
http://dx.doi.org/10.1155/2022/1254824
Descripción
Sumario:BACKGROUND: This study was designed to investigate differences in biochemical parameters between mouse and humans after paraquat (PQ) poisoning and develop a suitable animal model for studying organ damage after PQ poisoning. The prognostic factors of PQ-poisoned patients were further analyzed. METHODS: Thirty C57BL/6J mice were randomly divided into five groups (control, sham, and 3 PQ doses), and the mouse model was established by intragastric administration of PQ. Physiological indexes such as the body weight, mental state, and mortality rate were observed. Biochemical parameters were analyzed 24 h after PQ poisoning. We also performed a retrospective analysis of clinical data from 29 patients with PQ poisoning admitted to the Emergency Department of the Affiliated Hospital of Taishan Medical College between April 2016 and February 2018. Biochemical parameters were compared between the mouse model and patients with PQ poisoning. RESULTS: In the PQ poisoning mouse model, the lethal dose group PQ360 showed remarkable increases in serum levels of potassium (K(+)), carbon dioxide (CO(2)), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) compared with the nonlethal dose PQ100 and PQ200 groups. The biochemical results of the patients showed that K(+) and Cl(−) levels were significantly reduced in the death group compared to the survival group. Levels of ALT, AST, blood urea nitrogen (BUN), and amylase were higher, and the neutrophil-to-lymphocyte ratio (NLR) was increased in the death group compared with the survival group. CONCLUSIONS: The combination of age, PQ dosage, K(+), Cl(−), BUN, ALT, AST, amylase, and NLR can be used to more accurately predict the outcome of patients with PQ poisoning. C57 mice are an appropriate animal model to study liver and kidney functions following PQ exposure.