Cargando…

Medical Data Acquisition and Internet of Things Technology-Based Cerebral Stroke Disease Prevention and Rehabilitation Nursing Mobile Medical Management System

This research was aimed at exploring the application value of a mobile medical management system based on Internet of Things technology and medical data collection in stroke disease prevention and rehabilitation nursing. In this study, on the basis of radio frequency identification (RFID) technology...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Yunna, Zhang, Wenjing, Li, Qingjiang, Ma, Wenhui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8816578/
https://www.ncbi.nlm.nih.gov/pubmed/35126624
http://dx.doi.org/10.1155/2022/4646454
Descripción
Sumario:This research was aimed at exploring the application value of a mobile medical management system based on Internet of Things technology and medical data collection in stroke disease prevention and rehabilitation nursing. In this study, on the basis of radio frequency identification (RFID) technology, the signals collected by the sensor were filtered by the optimized median filtering algorithm, and a rehabilitation nursing evaluation model was established based on the backpropagation (BP) neural network. The performance of the medical management system was verified in 32 rehabilitation patients with hemiplegia after stroke and 6 healthy medical staff in the rehabilitation medical center of the hospital. The results showed that the mean square error (MSE) and peak signal-to-noise ratio (PSNR) of the median filtering algorithm after optimization were significantly higher than those before optimization (P < 0.05). When the number of neurons was 23, the prediction accuracy of the test set reached a maximum of 89.83%. Using traingda as the training function, the model had the lowest training time and root mean squared error (RMSE) value of 2.5 s and 0.29, respectively, which were significantly lower than the traingd and traingdm functions (P < 0.01). The error percentage and RMSE of the model reached a minimum of 7.56% and 0.25, respectively, when the transfer functions of both the hidden and input layers were tansig. The prediction accuracy in stages III~VI was 90.63%. It indicated that the mobile medical management system established based on Internet of Things technology and medical data collection has certain application value for the prevention and rehabilitation nursing of stroke patients, which provides a new idea for the diagnosis, treatment, and rehabilitation of stroke patients.