Cargando…

miR-138-5p Inhibits the Growth and Invasion of Glioma Cells by Regulating WEE1

BACKGROUND: Accumulating evidence has demonstrated the role of differentially expressed miRNAs in glioma progression. Our previous bioinformatics analyses revealed a role of miR-138-5p in glioma. miR-138-5p was decreased in various tumors, and He et al. found that miR-138-5p had an inhibitory effect...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Jianwu, Tang, Zhi, Yu, Zhengtao, Deng, Zhiyong, Liu, Yan, Ren, Nianjun, Wang, Lei, He, Zhengwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8816588/
https://www.ncbi.nlm.nih.gov/pubmed/35127343
http://dx.doi.org/10.1155/2022/7809882
Descripción
Sumario:BACKGROUND: Accumulating evidence has demonstrated the role of differentially expressed miRNAs in glioma progression. Our previous bioinformatics analyses revealed a role of miR-138-5p in glioma. miR-138-5p was decreased in various tumors, and He et al. found that miR-138-5p had an inhibitory effect on glioma cells in 2021. However, the role of miR-138-5p in the development of glioma and the underlying mechanism is unknown. In this study, we explored whether miR-138-5p affects the biology of glioma by regulating WEE1 expression. METHODS: miR-138-5p and WEE1 G2 checkpoint kinase (WEE1) RNA and protein expression levels in glioma tissues were detected with qRT-PCR and western blotting, respectively. The effects of miR-138-5p and WEE1 on glioma cell migration and invasion were investigated using Transwell assays. CCK-8 assay was used to measure the effects of miR-138-5p and WEE1 on glioma cell proliferation. The mortality of glioma cells transfected with miR-138-5p and WEE1 was measured with flow cytometry. The relationship between miR-138-5p and WEE1 was explored using a luciferase reporter analysis. RESULTS: Functional studies indicated that overexpression of miR-138-5p suppressed cell proliferation, migration, and invasion and promoted death in glioma cell lines. WEE1 was identified as a target of miR-138-5p, and overexpression of miR-138-5p significantly suppressed the levels of WEE1. Moreover, reintroduction of WEE1 partially abrogated miR-138-5p-induced suppression of motility and invasion in glioma cells. CONCLUSION: The low expression of miR-138-5p in glioma suggests a tumor suppressor role for this miRNA. miR-138-5p suppresses glioma progression by regulating WEE1. These data provide new insights into the molecular mechanism of glioma.