Cargando…
Complete genome sequence of Shewanella algae strain 2NE11, a decolorizing bacterium isolated from industrial effluent in Peru
Shewanella is a microbial group with high potential to be applied in textile effluents bioremediation due to its ability to use a wide variety of substrates as a final electron acceptor in respiration. The present research aimed to describe a new strain, Shewanella algae 2NE11, a decolorizing bacter...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8816663/ https://www.ncbi.nlm.nih.gov/pubmed/35145887 http://dx.doi.org/10.1016/j.btre.2022.e00704 |
Sumario: | Shewanella is a microbial group with high potential to be applied in textile effluents bioremediation due to its ability to use a wide variety of substrates as a final electron acceptor in respiration. The present research aimed to describe a new strain, Shewanella algae 2NE11, a decolorizing bacterium isolated from industrial effluent in Peru. S. algae 2NE11 showed an optimal growth under pH 6-9, temperature between 30-40 °C, and 0-4 % NaCl. It can tolerate high concentrations of NaCl until 10% and low temperatures as 4 °C. It decolorizes azo and anthraquinone dyes with a decolorization rate of 89-97%. We performed next-generation sequencing (Pacific Bioscience®) and achieved its complete genome sequence with a length of 5,030,813bp and a GC content of 52.98%. Genomic characterization revealed the presence of protein-coding genes related to decolorization like azoreductase, dyp-peroxidase, oxidoreductases, and the complete Mtr respiratory pathway. Likewise, we identified other properties such as the presence of metal resistant genes, and genes related to lactate and N-acetylglucosamine metabolism. These results highlight its potential to be applied in the bioremediation of textile effluents and guide future research on decolorization metabolic pathways. |
---|