Cargando…
Spectral decoupling for training transferable neural networks in medical imaging
Many neural networks for medical imaging generalize poorly to data unseen during training. Such behavior can be caused by overfitting easy-to-learn features while disregarding other potentially informative features. A recent implicit bias mitigation technique called spectral decoupling provably enco...
Autores principales: | Pohjonen, Joona, Stürenberg, Carolin, Rannikko, Antti, Mirtti, Tuomas, Pitkänen, Esa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8816718/ https://www.ncbi.nlm.nih.gov/pubmed/35146385 http://dx.doi.org/10.1016/j.isci.2022.103767 |
Ejemplares similares
-
Prostate MRI added to CAPRA, MSKCC and Partin cancer nomograms significantly enhances the prediction of adverse findings and biochemical recurrence after radical prostatectomy
por: Sandeman, Kevin, et al.
Publicado: (2020) -
AI Model for Prostate Biopsies Predicts Cancer Survival
por: Sandeman, Kevin, et al.
Publicado: (2022) -
Fibroblast as a critical stromal cell type determining prognosis in prostate cancer
por: Blom, Sami, et al.
Publicado: (2019) -
Decoupled neural network training with re-computation and weight prediction
por: Peng, Jiawei, et al.
Publicado: (2023) -
Repeat multiparametric MRI in prostate cancer patients on active surveillance
por: Eineluoto, Juho T., et al.
Publicado: (2017)