Cargando…
Strain Wars: Competitive interactions between SARS-CoV-2 strains are explained by Gibbs energy of antigen-receptor binding
Since the beginning of the COVID-19 pandemic, SARS-CoV-2 has mutated several times into new strains, with an increased infectivity. Infectivity of SARS-CoV-2 strains depends on binding affinity of the virus to its host cell receptor. In this paper, we quantified the binding affinity using Gibbs ener...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8816792/ https://www.ncbi.nlm.nih.gov/pubmed/35155724 http://dx.doi.org/10.1016/j.mran.2022.100202 |
Sumario: | Since the beginning of the COVID-19 pandemic, SARS-CoV-2 has mutated several times into new strains, with an increased infectivity. Infectivity of SARS-CoV-2 strains depends on binding affinity of the virus to its host cell receptor. In this paper, we quantified the binding affinity using Gibbs energy of binding and analyzed the competition between SARS-CoV-2 strains as an interference phenomenon. Gibbs energies of binding were calculated for several SARS-SoV-2 strains, including Hu-1 (wild type), B.1.1.7 (alpha), B.1.351 (beta), P.1 (Gamma), B.1.36 and B.1.617 (Delta). The least negative Gibbs energy of binding is that of Hu-1 strain, -37.97 kJ/mol. On the other hand, the most negative Gibbs energy of binding is that of the Delta strain, -49.50 kJ/mol. We used the more negative Gibbs energy of binding to explain the increased infectivity of newer SARS-CoV-2 strains compared to the wild type. Gibbs energies of binding was found to decrease chronologically, with appearance of new strains. The ratio of Gibbs energies of binding of mutated strains and wild type was used to define a susceptibility coefficient, which is an indicator of viral interference, where a virus can prevent or partially inhibit infection with another virus. |
---|