Cargando…
Simulated diagnostic performance of low-field MRI: Harnessing open-access datasets to evaluate novel devices
The purpose of this study is to demonstrate a method for virtually evaluating novel imaging devices using machine learning and open-access datasets, here applied to a new, low-field strength portable 64mT MRI device. Paired 3 T and 64mT brain images were used to develop and validate a transformation...
Autores principales: | Arnold, T. Campbell, Baldassano, Steven N., Litt, Brian, Stein, Joel M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8816889/ https://www.ncbi.nlm.nih.gov/pubmed/34968700 http://dx.doi.org/10.1016/j.mri.2021.12.007 |
Ejemplares similares
-
Low‐field MRI: Clinical promise and challenges
por: Arnold, Thomas Campbell, et al.
Publicado: (2022) -
Facilitating open-science with realistic fMRI simulation: validation and application
por: Ellis, Cameron T., et al.
Publicado: (2020) -
An open-access dataset of naturalistic viewing using simultaneous EEG-fMRI
por: Telesford, Qawi K., et al.
Publicado: (2023) -
The Open-Access European Prevention of Alzheimer’s Dementia (EPAD) MRI dataset and processing workflow
por: Lorenzini, Luigi, et al.
Publicado: (2022) -
w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices
por: Bhat, Ganapati, et al.
Publicado: (2020)