Cargando…
Federated learning and differential privacy for medical image analysis
The artificial intelligence revolution has been spurred forward by the availability of large-scale datasets. In contrast, the paucity of large-scale medical datasets hinders the application of machine learning in healthcare. The lack of publicly available multi-centric and diverse datasets mainly st...
Autores principales: | Adnan, Mohammed, Kalra, Shivam, Cresswell, Jesse C., Taylor, Graham W., Tizhoosh, Hamid R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8816913/ https://www.ncbi.nlm.nih.gov/pubmed/35121774 http://dx.doi.org/10.1038/s41598-022-05539-7 |
Ejemplares similares
-
Decentralized federated learning through proxy model sharing
por: Kalra, Shivam, et al.
Publicado: (2023) -
Medical imaging deep learning with differential privacy
por: Ziller, Alexander, et al.
Publicado: (2021) -
PLDP-FL: Federated Learning with Personalized Local Differential Privacy
por: Shen, Xiaoying, et al.
Publicado: (2023) -
Privacy-first health research with federated learning
por: Sadilek, Adam, et al.
Publicado: (2021) -
A federated learning differential privacy algorithm for non-Gaussian heterogeneous data
por: Yang, Xinyu, et al.
Publicado: (2023)