Cargando…

Differentially Expressed Hepatic Genes Revealed by Transcriptomics in Pigs with Different Liver Lipid Contents

The liver is the center for uptake, synthesis, packaging, and secretion of lipids and lipoproteins. The research on lipid metabolism in pigs is limited. The objective of the present study is to identify the genes related to lipid metabolism and oxidative stress in pigs by using transcriptomic analys...

Descripción completa

Detalles Bibliográficos
Autores principales: Lyu, Wentao, Xiang, Yun, Wang, Xingxin, Li, Jingshang, Yang, Caimei, Yang, Hua, Xiao, Yingping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817107/
https://www.ncbi.nlm.nih.gov/pubmed/35132345
http://dx.doi.org/10.1155/2022/2315575
_version_ 1784645565874700288
author Lyu, Wentao
Xiang, Yun
Wang, Xingxin
Li, Jingshang
Yang, Caimei
Yang, Hua
Xiao, Yingping
author_facet Lyu, Wentao
Xiang, Yun
Wang, Xingxin
Li, Jingshang
Yang, Caimei
Yang, Hua
Xiao, Yingping
author_sort Lyu, Wentao
collection PubMed
description The liver is the center for uptake, synthesis, packaging, and secretion of lipids and lipoproteins. The research on lipid metabolism in pigs is limited. The objective of the present study is to identify the genes related to lipid metabolism and oxidative stress in pigs by using transcriptomic analysis. Liver segments were collected from 60 Jinhua pigs for the determination of liver lipid content. The 7 pigs with the highest and lowest liver lipid content were set as group H and group L, respectively. Liver segments and serum samples were collected from each pig of the H and L groups for RNA sequencing and the determination of triglycerides (TG) content and high-density lipoprotein cholesterol (HDL) content, respectively. The HDL content in the serum of pigs in the H group was significantly higher than the L group (P < 0.05). From transcriptomic sequencing, 6162 differentially expressed genes (DEGs) were identified, among which 2962 were upregulated and 3200 downregulated genes with the increase in the liver content of Jinhua pigs. After GO enrichment and KEGG analyses, lipid modification, cellular lipid metabolic process, cholesterol biosynthetic process, fatty acid metabolic process, oxidoreduction coenzyme metabolic process, oxidoreductase activity, acting on CH-OH group of donors, response to oxidative stress, nonalcoholic fatty liver disease (NAFLD), sphingolipid metabolism, and oxidative phosphorylation pathways were involved in lipid metabolism and oxidative stress in Jinhua pigs. For further validation, we selected 10 DEGs including 7 upregulated genes (APOE, APOA1, APOC3, LCAT, CYP2E1, GPX1, and ROMO1) and 4 downregulated genes (PPARA, PPARGC1A, and TXNIP) for RT-qPCR verification. To validate these results in other pig species, we analyzed these 10 DEGs in the liver of Duroc×Landrace×Yorkshire pigs. Similar expression patterns of these 10 DEGs were observed. These data would provide an insight to understand the gene functions regulating lipid metabolism and oxidative stress and would potentially provide theoretical basis for the development of strategies to modulate lipid metabolism and even control human diabetes and obesity by gene regulations.
format Online
Article
Text
id pubmed-8817107
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-88171072022-02-06 Differentially Expressed Hepatic Genes Revealed by Transcriptomics in Pigs with Different Liver Lipid Contents Lyu, Wentao Xiang, Yun Wang, Xingxin Li, Jingshang Yang, Caimei Yang, Hua Xiao, Yingping Oxid Med Cell Longev Research Article The liver is the center for uptake, synthesis, packaging, and secretion of lipids and lipoproteins. The research on lipid metabolism in pigs is limited. The objective of the present study is to identify the genes related to lipid metabolism and oxidative stress in pigs by using transcriptomic analysis. Liver segments were collected from 60 Jinhua pigs for the determination of liver lipid content. The 7 pigs with the highest and lowest liver lipid content were set as group H and group L, respectively. Liver segments and serum samples were collected from each pig of the H and L groups for RNA sequencing and the determination of triglycerides (TG) content and high-density lipoprotein cholesterol (HDL) content, respectively. The HDL content in the serum of pigs in the H group was significantly higher than the L group (P < 0.05). From transcriptomic sequencing, 6162 differentially expressed genes (DEGs) were identified, among which 2962 were upregulated and 3200 downregulated genes with the increase in the liver content of Jinhua pigs. After GO enrichment and KEGG analyses, lipid modification, cellular lipid metabolic process, cholesterol biosynthetic process, fatty acid metabolic process, oxidoreduction coenzyme metabolic process, oxidoreductase activity, acting on CH-OH group of donors, response to oxidative stress, nonalcoholic fatty liver disease (NAFLD), sphingolipid metabolism, and oxidative phosphorylation pathways were involved in lipid metabolism and oxidative stress in Jinhua pigs. For further validation, we selected 10 DEGs including 7 upregulated genes (APOE, APOA1, APOC3, LCAT, CYP2E1, GPX1, and ROMO1) and 4 downregulated genes (PPARA, PPARGC1A, and TXNIP) for RT-qPCR verification. To validate these results in other pig species, we analyzed these 10 DEGs in the liver of Duroc×Landrace×Yorkshire pigs. Similar expression patterns of these 10 DEGs were observed. These data would provide an insight to understand the gene functions regulating lipid metabolism and oxidative stress and would potentially provide theoretical basis for the development of strategies to modulate lipid metabolism and even control human diabetes and obesity by gene regulations. Hindawi 2022-01-28 /pmc/articles/PMC8817107/ /pubmed/35132345 http://dx.doi.org/10.1155/2022/2315575 Text en Copyright © 2022 Wentao Lyu et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Lyu, Wentao
Xiang, Yun
Wang, Xingxin
Li, Jingshang
Yang, Caimei
Yang, Hua
Xiao, Yingping
Differentially Expressed Hepatic Genes Revealed by Transcriptomics in Pigs with Different Liver Lipid Contents
title Differentially Expressed Hepatic Genes Revealed by Transcriptomics in Pigs with Different Liver Lipid Contents
title_full Differentially Expressed Hepatic Genes Revealed by Transcriptomics in Pigs with Different Liver Lipid Contents
title_fullStr Differentially Expressed Hepatic Genes Revealed by Transcriptomics in Pigs with Different Liver Lipid Contents
title_full_unstemmed Differentially Expressed Hepatic Genes Revealed by Transcriptomics in Pigs with Different Liver Lipid Contents
title_short Differentially Expressed Hepatic Genes Revealed by Transcriptomics in Pigs with Different Liver Lipid Contents
title_sort differentially expressed hepatic genes revealed by transcriptomics in pigs with different liver lipid contents
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817107/
https://www.ncbi.nlm.nih.gov/pubmed/35132345
http://dx.doi.org/10.1155/2022/2315575
work_keys_str_mv AT lyuwentao differentiallyexpressedhepaticgenesrevealedbytranscriptomicsinpigswithdifferentliverlipidcontents
AT xiangyun differentiallyexpressedhepaticgenesrevealedbytranscriptomicsinpigswithdifferentliverlipidcontents
AT wangxingxin differentiallyexpressedhepaticgenesrevealedbytranscriptomicsinpigswithdifferentliverlipidcontents
AT lijingshang differentiallyexpressedhepaticgenesrevealedbytranscriptomicsinpigswithdifferentliverlipidcontents
AT yangcaimei differentiallyexpressedhepaticgenesrevealedbytranscriptomicsinpigswithdifferentliverlipidcontents
AT yanghua differentiallyexpressedhepaticgenesrevealedbytranscriptomicsinpigswithdifferentliverlipidcontents
AT xiaoyingping differentiallyexpressedhepaticgenesrevealedbytranscriptomicsinpigswithdifferentliverlipidcontents