Cargando…

Spatiotemporal clustering patterns and sociodemographic determinants of COVID-19 (SARS-CoV-2) infections in Helsinki, Finland

This study aims to elucidate the variations in spatiotemporal patterns and sociodemographic determinants of SARS-CoV-2 infections in Helsinki, Finland. Global and local spatial autocorrelation were inspected with Moran's I and LISA statistics, and Getis-Ord Gi* statistics was used to identify t...

Descripción completa

Detalles Bibliográficos
Autores principales: Siljander, Mika, Uusitalo, Ruut, Pellikka, Petri, Isosomppi, Sanna, Vapalahti, Olli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817446/
https://www.ncbi.nlm.nih.gov/pubmed/35691637
http://dx.doi.org/10.1016/j.sste.2022.100493
Descripción
Sumario:This study aims to elucidate the variations in spatiotemporal patterns and sociodemographic determinants of SARS-CoV-2 infections in Helsinki, Finland. Global and local spatial autocorrelation were inspected with Moran's I and LISA statistics, and Getis-Ord Gi* statistics was used to identify the hot spot areas. Space-time statistics were used to detect clusters of high relative risk and regression models were implemented to explain sociodemographic determinants for the clusters. The findings revealed the presence of spatial autocorrelation and clustering of COVID-19 cases. High–high clusters and high relative risk areas emerged primarily in Helsinki's eastern neighborhoods, which are socioeconomically vulnerable, with a few exceptions revealing local outbreaks in other areas. The variation in COVID-19 rates was largely explained by median income and the number of foreign citizens in the population. Furthermore, the use of multiple spatiotemporal analysis methods are recommended to gain deeper insights into the complex spatiotemporal clustering patterns and sociodemographic determinants of the COVID-19 cases.