Cargando…
Studying patterns and predictors of HIV viral suppression using A Big Data approach: a research protocol
BACKGROUND: Given the importance of viral suppression in ending the HIV epidemic in the US and elsewhere, an optimal predictive model of viral status can help clinicians identify those at risk of poor viral control and inform clinical improvements in HIV treatment and care. With an increasing availa...
Autores principales: | Zhang, Jiajia, Olatosi, Bankole, Yang, Xueying, Weissman, Sharon, Li, Zhenlong, Hu, Jianjun, Li, Xiaoming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817473/ https://www.ncbi.nlm.nih.gov/pubmed/35120435 http://dx.doi.org/10.1186/s12879-022-07047-5 |
Ejemplares similares
-
Protocol for developing a personalised prediction model for viral suppression among under-represented populations in the context of the COVID-19 pandemic
por: Zhang, Jiajia, et al.
Publicado: (2023) -
Using big data analytics to improve HIV medical care utilisation in South Carolina: A study protocol
por: Olatosi, Bankole, et al.
Publicado: (2019) -
Moderation effect of community health on the relationship between racial/ethnic residential segregation and HIV viral suppression in South Carolina: A county-level longitudinal study from 2013 to 2018
por: Shi, Fanghui, et al.
Publicado: (2023) -
COVID-19 vaccine effectiveness among people living with and without HIV in South Carolina, USA: protocol of a population-based cohort study
por: Yang, Xueying, et al.
Publicado: (2022) -
Monitoring the Spatial Spread of COVID-19 and Effectiveness of Control Measures Through Human Movement Data: Proposal for a Predictive Model Using Big Data Analytics
por: Li, Zhenlong, et al.
Publicado: (2020)