Cargando…
Clinical evaluation of two AI models for automated breast cancer plan generation
BACKGROUND: Artificial intelligence (AI) shows great potential to streamline the treatment planning process. However, its clinical adoption is slow due to the limited number of clinical evaluation studies and because often, the translation of the predicted dose distribution to a deliverable plan is...
Autores principales: | Kneepkens, Esther, Bakx, Nienke, van der Sangen, Maurice, Theuws, Jacqueline, van der Toorn, Peter-Paul, Rijkaart, Dorien, van der Leer, Jorien, van Nunen, Thérèse, Hagelaar, Els, Bluemink, Hanneke, Hurkmans, Coen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817521/ https://www.ncbi.nlm.nih.gov/pubmed/35123517 http://dx.doi.org/10.1186/s13014-022-01993-9 |
Ejemplares similares
-
Reduction of heart and lung normal tissue complication probability using automatic beam angle optimization and more generic optimization objectives for breast radiotherapy
por: Bakx, Nienke, et al.
Publicado: (2021) -
Clinical evaluation of a deep learning segmentation model including manual adjustments afterwards for locally advanced breast cancer
por: Bakx, Nienke, et al.
Publicado: (2023) -
Development and evaluation of radiotherapy deep learning dose prediction models for breast cancer
por: Bakx, Nienke, et al.
Publicado: (2021) -
Artificial intelligence based treatment planning of radiotherapy for locally advanced breast cancer
por: van de Sande, Dennis, et al.
Publicado: (2021) -
Comparison of the output of a deep learning segmentation model for locoregional breast cancer radiotherapy trained on 2 different datasets
por: Bakx, Nienke, et al.
Publicado: (2023)