Cargando…
Performance determinants of unsupervised clustering methods for microbiome data
BACKGROUND: In microbiome data analysis, unsupervised clustering is often used to identify naturally occurring clusters, which can then be assessed for associations with characteristics of interest. In this work, we systematically compared beta diversity and clustering methods commonly used in micro...
Autores principales: | Shi, Yushu, Zhang, Liangliang, Peterson, Christine B., Do, Kim-Anh, Jenq, Robert R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817542/ https://www.ncbi.nlm.nih.gov/pubmed/35120564 http://dx.doi.org/10.1186/s40168-021-01199-3 |
Ejemplares similares
-
ProgPerm: Progressive permutation for a dynamic representation of the robustness of microbiome discoveries
por: Zhang, Liangliang, et al.
Publicado: (2021) -
Compositional zero-inflated network estimation for microbiome data
por: Ha, Min Jin, et al.
Publicado: (2020) -
Unsupervised statistical clustering of environmental shotgun sequences
por: Kislyuk, Andrey, et al.
Publicado: (2009) -
metaSpectraST: an unsupervised and database-independent analysis workflow for metaproteomic MS/MS data using spectrum clustering
por: Hao, Chunlin, et al.
Publicado: (2023) -
MetaCRS: unsupervised clustering of contigs with the recursive strategy of reducing metagenomic dataset’s complexity
por: Jiang, Zhongjun, et al.
Publicado: (2022)