Cargando…
A deep LSTM network for the Spanish electricity consumption forecasting
Nowadays, electricity is a basic commodity necessary for the well-being of any modern society. Due to the growth in electricity consumption in recent years, mainly in large cities, electricity forecasting is key to the management of an efficient, sustainable and safe smart grid for the consumer. In...
Autores principales: | Torres, J. F., Martínez-Álvarez, F., Troncoso, A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817773/ https://www.ncbi.nlm.nih.gov/pubmed/35153386 http://dx.doi.org/10.1007/s00521-021-06773-2 |
Ejemplares similares
-
Differentially private multivariate time series forecasting of aggregated human mobility with deep learning: Input or gradient perturbation?
por: Arcolezi, Héber Hwang, et al.
Publicado: (2022) -
Applying attention-based BiLSTM and technical indicators in the design and performance analysis of stock trading strategies
por: Lee, Ming-Che, et al.
Publicado: (2022) -
FEBDNN: fusion embedding-based deep neural network for user retweeting behavior prediction on social networks
por: Wang, Lidong, et al.
Publicado: (2022) -
A hybrid forecasting model using LSTM and Prophet for energy consumption with decomposition of time series data
por: Arslan, Serdar
Publicado: (2022) -
Deep Reads: Strands in the History of Molecular Genetics
por: Chisholm, Andrew D.
Publicado: (2014)