Cargando…
Learning State Assessment in Online Education Based on Multiple Facial Features Detection
Considering that most of online training is not effectively supervised, this article presents an online leaning state assessment approach which combines blink detection, yawn detection, and head pose estimation. Blink detection is realized by computing the eye aspect ratio and the ratio of closed ey...
Autores principales: | Li, Deguang, Cui, Zhanyou, Cao, Fukang, Cui, Gaoxiang, Shen, Jiaquan, Zhang, Yongxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817852/ https://www.ncbi.nlm.nih.gov/pubmed/35132313 http://dx.doi.org/10.1155/2022/3986470 |
Ejemplares similares
-
Detecting at-risk mental states for psychosis (ARMS) using machine learning ensembles and facial features
por: Loch, Alexandre Andrade, et al.
Publicado: (2023) -
Behavioral Analysis of EEG Signals in Loss-Gain Decision-Making Experiments
por: Shen, Jiaquan, et al.
Publicado: (2022) -
A Multiscale Constraints Method Localization of 3D Facial Feature Points
por: Li, Hong-an, et al.
Publicado: (2015) -
ADFAC: Automatic detection of facial articulatory features
por: Garg, Saurabh, et al.
Publicado: (2020) -
Hospitality education evolution observed in online learning dataset
por: Peng, Kang-Lin, et al.
Publicado: (2022)