Cargando…
Efficacy of NHP66 Bioactive Cage on Patients with Cervical Spine Injury in Short-Track Speed Skating
BACKGROUND: Short-track speed skating (STSS) is an extreme sport in pursuit of extreme speed and explosive force. In such a sport, once athletes fall down, they are susceptible to serious cervical spine injury (CSI) under the inertia of high-velocity movement. Nanohydroxyapatite/polyamide 66 (NHP66)...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817875/ https://www.ncbi.nlm.nih.gov/pubmed/35132331 http://dx.doi.org/10.1155/2022/6088398 |
_version_ | 1784645733864964096 |
---|---|
author | Yang, Xinming Liu, Fei Yin, Yanlin Zhang, Peinan Jia, Yongli Zhang, Ying Yao, Yao Tian, Ye |
author_facet | Yang, Xinming Liu, Fei Yin, Yanlin Zhang, Peinan Jia, Yongli Zhang, Ying Yao, Yao Tian, Ye |
author_sort | Yang, Xinming |
collection | PubMed |
description | BACKGROUND: Short-track speed skating (STSS) is an extreme sport in pursuit of extreme speed and explosive force. In such a sport, once athletes fall down, they are susceptible to serious cervical spine injury (CSI) under the inertia of high-velocity movement. Nanohydroxyapatite/polyamide 66 (NHP66) bioactive cage is a high-tech product of nanotechnology in the medical field in recent years. With a structure similar to that of human cortical bone, NHP66 bioactive cage has extremely high toughness and strength, which tailors to the needs of STSS. OBJECTIVE: This study mainly analyzed the therapeutic effect of NHP66 on patients with CSI in STSS, aiming to provide new opportunities for the treatment of this patient population. METHODS: A total of 51 patients with CSI treated in our hospital were enrolled, including 19 cases of short-track speed skaters (observation group) and 32 cases of car accidents, falls from heights, or collision injuries (control group). The relevant surgical indicators (operation time, intraoperative blood loss, etc.), the incidence of adverse reactions, the Cobb angle of cervical lordosis before and after surgery, and the fusion segment height of the cage were observed and compared between the two groups. Postoperative pain was evaluated by the visual analog scale (VAS), improvement of spinal cord injury was assessed by the American Spinal Cord Injury Association (ASIA) Impairment Scale, and bone fusion, bone subsidence, and other motor functions were assessed by the Japanese Orthopaedic Association (JOA) score rating system. RESULTS: The operation time, intraoperative blood loss, and incidence of adverse reactions in the observation group were significantly lower than those in the control group. The Cobb angle of cervical lordosis and the fusion segment height of cage increased significantly higher in both groups after surgery. In addition, the VAS scores of the observation group 2 h and 3 d after operation were significantly lower than those of the control group. In terms of improvement of spinal cord injury, ASIA and JOA scores in the observation group were significantly higher than those before treatment and in the control group. There was no significant difference in bone fusion activity between the two groups. CONCLUSIONS: In this study, it is found through experiments that NHP66 has higher safety and application value than autogenous iliac bone, confirming that NHP66 can achieve significant results as a cage for anterior cervical decompression and iliac bone graft fusion and internal fixation in short-track speed skaters after CSI. |
format | Online Article Text |
id | pubmed-8817875 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-88178752022-02-06 Efficacy of NHP66 Bioactive Cage on Patients with Cervical Spine Injury in Short-Track Speed Skating Yang, Xinming Liu, Fei Yin, Yanlin Zhang, Peinan Jia, Yongli Zhang, Ying Yao, Yao Tian, Ye Comput Math Methods Med Research Article BACKGROUND: Short-track speed skating (STSS) is an extreme sport in pursuit of extreme speed and explosive force. In such a sport, once athletes fall down, they are susceptible to serious cervical spine injury (CSI) under the inertia of high-velocity movement. Nanohydroxyapatite/polyamide 66 (NHP66) bioactive cage is a high-tech product of nanotechnology in the medical field in recent years. With a structure similar to that of human cortical bone, NHP66 bioactive cage has extremely high toughness and strength, which tailors to the needs of STSS. OBJECTIVE: This study mainly analyzed the therapeutic effect of NHP66 on patients with CSI in STSS, aiming to provide new opportunities for the treatment of this patient population. METHODS: A total of 51 patients with CSI treated in our hospital were enrolled, including 19 cases of short-track speed skaters (observation group) and 32 cases of car accidents, falls from heights, or collision injuries (control group). The relevant surgical indicators (operation time, intraoperative blood loss, etc.), the incidence of adverse reactions, the Cobb angle of cervical lordosis before and after surgery, and the fusion segment height of the cage were observed and compared between the two groups. Postoperative pain was evaluated by the visual analog scale (VAS), improvement of spinal cord injury was assessed by the American Spinal Cord Injury Association (ASIA) Impairment Scale, and bone fusion, bone subsidence, and other motor functions were assessed by the Japanese Orthopaedic Association (JOA) score rating system. RESULTS: The operation time, intraoperative blood loss, and incidence of adverse reactions in the observation group were significantly lower than those in the control group. The Cobb angle of cervical lordosis and the fusion segment height of cage increased significantly higher in both groups after surgery. In addition, the VAS scores of the observation group 2 h and 3 d after operation were significantly lower than those of the control group. In terms of improvement of spinal cord injury, ASIA and JOA scores in the observation group were significantly higher than those before treatment and in the control group. There was no significant difference in bone fusion activity between the two groups. CONCLUSIONS: In this study, it is found through experiments that NHP66 has higher safety and application value than autogenous iliac bone, confirming that NHP66 can achieve significant results as a cage for anterior cervical decompression and iliac bone graft fusion and internal fixation in short-track speed skaters after CSI. Hindawi 2022-01-29 /pmc/articles/PMC8817875/ /pubmed/35132331 http://dx.doi.org/10.1155/2022/6088398 Text en Copyright © 2022 Xinming Yang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yang, Xinming Liu, Fei Yin, Yanlin Zhang, Peinan Jia, Yongli Zhang, Ying Yao, Yao Tian, Ye Efficacy of NHP66 Bioactive Cage on Patients with Cervical Spine Injury in Short-Track Speed Skating |
title | Efficacy of NHP66 Bioactive Cage on Patients with Cervical Spine Injury in Short-Track Speed Skating |
title_full | Efficacy of NHP66 Bioactive Cage on Patients with Cervical Spine Injury in Short-Track Speed Skating |
title_fullStr | Efficacy of NHP66 Bioactive Cage on Patients with Cervical Spine Injury in Short-Track Speed Skating |
title_full_unstemmed | Efficacy of NHP66 Bioactive Cage on Patients with Cervical Spine Injury in Short-Track Speed Skating |
title_short | Efficacy of NHP66 Bioactive Cage on Patients with Cervical Spine Injury in Short-Track Speed Skating |
title_sort | efficacy of nhp66 bioactive cage on patients with cervical spine injury in short-track speed skating |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817875/ https://www.ncbi.nlm.nih.gov/pubmed/35132331 http://dx.doi.org/10.1155/2022/6088398 |
work_keys_str_mv | AT yangxinming efficacyofnhp66bioactivecageonpatientswithcervicalspineinjuryinshorttrackspeedskating AT liufei efficacyofnhp66bioactivecageonpatientswithcervicalspineinjuryinshorttrackspeedskating AT yinyanlin efficacyofnhp66bioactivecageonpatientswithcervicalspineinjuryinshorttrackspeedskating AT zhangpeinan efficacyofnhp66bioactivecageonpatientswithcervicalspineinjuryinshorttrackspeedskating AT jiayongli efficacyofnhp66bioactivecageonpatientswithcervicalspineinjuryinshorttrackspeedskating AT zhangying efficacyofnhp66bioactivecageonpatientswithcervicalspineinjuryinshorttrackspeedskating AT yaoyao efficacyofnhp66bioactivecageonpatientswithcervicalspineinjuryinshorttrackspeedskating AT tianye efficacyofnhp66bioactivecageonpatientswithcervicalspineinjuryinshorttrackspeedskating |