Cargando…
Wheat Ear Segmentation Based on a Multisensor System and Superpixel Classification
The automatic segmentation of ears in wheat canopy images is an important step to measure ear density or extract relevant plant traits separately for the different organs. Recent deep learning algorithms appear as promising tools to accurately detect ears in a wide diversity of conditions. However,...
Autores principales: | Carlier, Alexis, Dandrifosse, Sébastien, Dumont, Benjamin, Mercatoris, Benoît |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817947/ https://www.ncbi.nlm.nih.gov/pubmed/35169713 http://dx.doi.org/10.34133/2022/9841985 |
Ejemplares similares
-
In-Field Wheat Reflectance: How to Reach the Organ Scale?
por: Dandrifosse, Sébastien, et al.
Publicado: (2022) -
Comparing CNNs and PLSr for estimating wheat organs biophysical variables using proximal sensing
por: Carlier, Alexis, et al.
Publicado: (2023) -
To What Extent Does Yellow Rust Infestation Affect Remotely Sensed Nitrogen Status?
por: Carlier, Alexis, et al.
Publicado: (2023) -
Imaging Wheat Canopy Through Stereo Vision: Overcoming the Challenges of the Laboratory to Field Transition for Morphological Features Extraction
por: Dandrifosse, Sébastien, et al.
Publicado: (2020) -
Foreground Detection Based on Superpixel and Semantic Segmentation
por: Feng, Junying, et al.
Publicado: (2022)