Cargando…
Increased plasmablasts enhance T cell-mediated beta cell destruction and promote the development of type 1 diabetes
BACKGROUND: Although type 1 diabetes (T1D) is typically described as a T cell-mediated autoimmune disease, increasing evidence for a role of B cells has emerged. However, the pivotal disease-relevant B cell subset and its contribution to islet autoimmunity remain elusive. METHODS: The frequencies an...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818172/ https://www.ncbi.nlm.nih.gov/pubmed/35123388 http://dx.doi.org/10.1186/s10020-022-00447-y |
Sumario: | BACKGROUND: Although type 1 diabetes (T1D) is typically described as a T cell-mediated autoimmune disease, increasing evidence for a role of B cells has emerged. However, the pivotal disease-relevant B cell subset and its contribution to islet autoimmunity remain elusive. METHODS: The frequencies and phenotypic characteristics of circulating B cell subsets were analyzed using flow cytometry in individuals with new-onset T1D, long-term T1D, type 2 diabetes, and nondiabetic controls, and also in a prospective cohort of patients receiving mesenchymal stromal cell (MSC) transplantation. NOD mice and adoptive transfer assay were used to dissect the role of the certain B cell subset in disease progression. An in-vitro coculture system of islets with immune cells was established to examine the response against islets and the underlying mechanisms. RESULTS: We identified that plasmablasts, a B cell subset at the antibody-secreting stage, were significantly increased and correlated with the deterioration of beta cell function in patients with new-onset T1D. Further, a fall of plasmablast number was associated with the preservation of beta cell function in patients who received MSC transplantation after 3 months of follow-up. Meanwhile, a gradual increase of plasmablasts in pancreatic lymph nodes during the natural progression of insulitis was observed in non-obese diabetic (NOD) mice; adoptive transfer of plasmablasts together with T cells from NOD mice accelerated diabetes onset in NOD/SCID recipients. CONCLUSIONS: Our study revealed that plasmablasts may function as antigen-presenting cells and promote the activation and proinflammatory response of CD4(+) T cells, further contributing to the T cell-mediated beta cell destruction. Our results provide insights into the pathogenic role of plasmablasts in islet autoimmunity and may offer new translational strategies for inhibiting T1D development. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s10020-022-00447-y. |
---|