Cargando…
Evaluating semantic similarity methods for comparison of text-derived phenotype profiles
BACKGROUND: Semantic similarity is a valuable tool for analysis in biomedicine. When applied to phenotype profiles derived from clinical text, they have the capacity to enable and enhance ‘patient-like me’ analyses, automated coding, differential diagnosis, and outcome prediction. While a large body...
Autores principales: | Slater, Luke T., Russell, Sophie, Makepeace, Silver, Carberry, Alexander, Karwath, Andreas, Williams, John A., Fanning, Hilary, Ball, Simon, Hoehndorf, Robert, Gkoutos, Georgios V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818208/ https://www.ncbi.nlm.nih.gov/pubmed/35123470 http://dx.doi.org/10.1186/s12911-022-01770-4 |
Ejemplares similares
-
Multi-faceted semantic clustering with text-derived phenotypes()
por: Slater, Luke T., et al.
Publicado: (2021) -
Towards similarity-based differential diagnostics for common diseases
por: Slater, Luke T., et al.
Publicado: (2021) -
Effects of Negation and Uncertainty Stratification on Text-Derived Patient Profile Similarity
por: Slater, Luke T., et al.
Publicado: (2021) -
Improved characterisation of clinical text through ontology-based vocabulary expansion
por: Slater, Luke T., et al.
Publicado: (2021) -
Towards semantic interoperability: finding and repairing hidden contradictions in biomedical ontologies
por: Slater, Luke T., et al.
Publicado: (2020)