Cargando…
BID-Net: An Automated System for Bone Invasion Detection Occurring at Stage T4 in Oral Squamous Carcinoma Using Deep Learning
Detection of the presence and absence of bone invasion by the tumor in oral squamous cell carcinoma (OSCC) patients is very significant for their treatment planning and surgical resection. For bone invasion detection, CT scan imaging is the preferred choice of radiologists because of its high sensit...
Autores principales: | Agarwal, Pinky, Yadav, Anju, Mathur, Pratistha, Pal, Vipin, Chakrabarty, Amitabha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818426/ https://www.ncbi.nlm.nih.gov/pubmed/35140773 http://dx.doi.org/10.1155/2022/4357088 |
Ejemplares similares
-
Performance Analysis of Deep Learning Models for Binary Classification of Cancer Gene Expression Data
por: Majumder, Subhasree, et al.
Publicado: (2022) -
Bid Adieu……
por: Agarwal, Sanjay Kumar
Publicado: (2022) -
NetBID2 provides comprehensive hidden driver analysis
por: Dong, Xinran, et al.
Publicado: (2023) -
FVC-NET: An Automated Diagnosis of Pulmonary Fibrosis Progression Prediction Using Honeycombing and Deep Learning
por: Yadav, Anju, et al.
Publicado: (2022) -
PyBIDS: Python tools for BIDS datasets
por: Yarkoni, Tal, et al.
Publicado: (2019)