Cargando…
Identification of Visual Imagery by Electroencephalography Based on Empirical Mode Decomposition and an Autoregressive Model
The traditional imagery task for brain–computer interfaces (BCIs) consists of motor imagery (MI) in which subjects are instructed to imagine moving certain parts of their body. This kind of imagery task is difficult for subjects. In this study, we used a less studied yet more easily performed type o...
Autores principales: | Fu, Yunfa, Li, Zhaoyang, Gong, Anmin, Qian, Qian, Su, Lei, Zhao, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818430/ https://www.ncbi.nlm.nih.gov/pubmed/35140763 http://dx.doi.org/10.1155/2022/1038901 |
Ejemplares similares
-
A novel strategy for driving car brain–computer interfaces: Discrimination of EEG-based visual-motor imagery
por: Zhou, Zhouzhou, et al.
Publicado: (2021) -
Decoding of Motor Coordination Imagery Involving the Lower Limbs by the EEG-Based Brain Network
por: Fu, Yunfa, et al.
Publicado: (2021) -
Recognition of Flexion and Extension Imagery Involving the Right and Left Arms Based on Deep Belief Network and Functional Near-Infrared Spectroscopy
por: Fu, Yunfa, et al.
Publicado: (2021) -
Improved Brain–Computer Interface Signal Recognition Algorithm Based on Few-Channel Motor Imagery
por: Wang, Fan, et al.
Publicado: (2022) -
Decoding of Walking Imagery and Idle State Using Sparse Representation Based on fNIRS
por: Li, Hongquan, et al.
Publicado: (2021)