Cargando…

Implementation and Optimization of Reverse Suspension Structure Design Model Using Deep Learning

The present work aims to improve the design efficiency and optimize the results in the increasingly complex and diversified material design projects to help architects realize the better performance of building structures. According to the characteristics of comprehensive perception and intelligent...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Xiwen, Wang, Kai, Wang, Shaoxuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818433/
https://www.ncbi.nlm.nih.gov/pubmed/35140777
http://dx.doi.org/10.1155/2022/7544113
Descripción
Sumario:The present work aims to improve the design efficiency and optimize the results in the increasingly complex and diversified material design projects to help architects realize the better performance of building structures. According to the characteristics of comprehensive perception and intelligent processing of the Internet of Things, a reverse suspension structure design model is constructed based on the finite element method and simulated annealing algorithm. Besides, deep learning is adopted to train complex functions for performance correction and to optimize the plane structure of shell structure. Moreover, the force is transformed into shape, and the form-finding process is completed to facilitate the operation of designers. Finally, the spatial anchoring ability of the geographic information system is used to match and calculate the relevant characteristics of spatial elements. On this basis, the index construction strategy based on weight distribution is employed to realize the data fusion diagnosis framework and enhance the intelligence of architectural design. The simulation results show that the maximum tensile stress of the physical suspension experiment is 3.71 MPa and the maximum compressive stress is 14.7 MPa. The compressive stress value is much larger than the tensile stress value. The maximum deformation value's difference between the compressive and tensile stress is 0.07 and 0.11, respectively. The error is within the acceptable range, which is similar to the compression state results obtained from the actual suspension physical experiment, indicating that the initial design model of the reverse suspension structure based on deep learning is reliable. In addition, the evolutionary optimization effect analysis results demonstrate that the load of the design structure is relatively uniform, which verifies the feasibility of the algorithm reported here. The research significance of the reverse suspension structure model constructed here is to provide an accurate and feasible design idea for the reverse design of some complex structures in the building suspension. It can also shorten the creation and improvement cycle of this kind of structure and optimize the performance and construction cycle of the building structure.