Cargando…

Decreasing the abundance of tetracycline-resistant Escherichia coli in pig feces during nursery using flavophospholipol as a pig feed additive

Tetracyclines (TCs) are widely used for livestock, and the high prevalence of TC-resistant Escherichia coli in livestock has become a serious concern worldwide. In Japan, the National Action Plan on Antimicrobial Resistance in 2016 aimed to reduce the TC resistance rate in E. coli derived from lives...

Descripción completa

Detalles Bibliográficos
Autores principales: Kimura, Junichiro, Kudo, Hayami, Fukuda, Akira, Yamada, Michi, Makita, Kohei, Oka, Kentaro, Takahashi, Motomichi, Tamura, Yutaka, Usui, Masaru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818586/
https://www.ncbi.nlm.nih.gov/pubmed/35146180
http://dx.doi.org/10.1016/j.vas.2022.100236
Descripción
Sumario:Tetracyclines (TCs) are widely used for livestock, and the high prevalence of TC-resistant Escherichia coli in livestock has become a serious concern worldwide. In Japan, the National Action Plan on Antimicrobial Resistance in 2016 aimed to reduce the TC resistance rate in E. coli derived from livestock. Flavophospholipol (FPL), used as a feed additive, has an inhibitory effect on the spread of plasmid-mediated antimicrobial resistance. The number of TC-resistant E. coli was determined in pigs administered TCs and/or FPL to clarify the effect of FPL on reducing the number of TC-resistant E. coli in pigs. TC-resistant E. coli and their plasmids were then analyzed. The pigs were divided into four groups: control, doxycycline (DOXY; a TC), FPL, and a DOXY-FPL combination. Their feces were collected from the nursing period to the day before being transported to the slaughterhouse, followed by estimation of TC-resistant E. coli (colony-forming units [CFU]/g). The number of TC-resistant E. coli increased with the use of DOXY, suggesting that DOXY administration provides a selective pressure for TC-resistant E. coli. Supplementation with FPL as a feed additive significantly suppressed the increase in the number of TC-resistant E. coli, especially during the DOXY administration period. Transfer and growth inhibition analyses were performed for TC-resistant isolates. FPL inhibited the conjugational transfer and growth of a few TC-resistant E. coli isolates. These results suggest that FPL is effective against the spread of TC-resistant E. coli.