Cargando…
Epigenome‐wide association study of sarcopenia: findings from the Hertfordshire Sarcopenia Study (HSS)
BACKGROUND: Sarcopenia is the age‐related loss of muscle mass, strength, and function. Epigenetic processes such as DNA methylation, which integrate both genetic and environmental exposures, have been suggested to contribute to the development of sarcopenia. This study aimed to determine whether dif...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818655/ https://www.ncbi.nlm.nih.gov/pubmed/34862756 http://dx.doi.org/10.1002/jcsm.12876 |
_version_ | 1784645872642949120 |
---|---|
author | Antoun, Elie Garratt, Emma S. Taddei, Andrea Burton, Mark A. Barton, Sheila J. Titcombe, Phil Westbury, Leo D. Baczynska, Alicia Migliavacca, Eugenia Feige, Jerome N. Sydall, Holly E. Dennison, Elaine Dodds, Richard Roberts, Helen C. Richardson, Peter Sayer, Avan A. Shaw, Sarah Cooper, Cyrus Holbrook, Joanna D. Patel, Harnish P. Godfrey, Keith M. Lillycrop, Karen A. |
author_facet | Antoun, Elie Garratt, Emma S. Taddei, Andrea Burton, Mark A. Barton, Sheila J. Titcombe, Phil Westbury, Leo D. Baczynska, Alicia Migliavacca, Eugenia Feige, Jerome N. Sydall, Holly E. Dennison, Elaine Dodds, Richard Roberts, Helen C. Richardson, Peter Sayer, Avan A. Shaw, Sarah Cooper, Cyrus Holbrook, Joanna D. Patel, Harnish P. Godfrey, Keith M. Lillycrop, Karen A. |
author_sort | Antoun, Elie |
collection | PubMed |
description | BACKGROUND: Sarcopenia is the age‐related loss of muscle mass, strength, and function. Epigenetic processes such as DNA methylation, which integrate both genetic and environmental exposures, have been suggested to contribute to the development of sarcopenia. This study aimed to determine whether differences in the muscle methylome are associated with sarcopenia and its component measures: grip strength, appendicular lean mass index (ALMi), and gait speed. METHODS: Using the Infinium Human MethylationEPIC BeadChip, we measured DNA methylation in vastus lateralis muscle biopsies of 83 male participants (12 with sarcopenia) with a mean (standard deviation) age of 75.7 (3.6) years from the Hertfordshire Sarcopenia Study (HSS) and Hertfordshire Sarcopenia Study extension (HSSe) and examined associations with sarcopenia and its components. Pathway, histone mark, and transcription factor enrichment of the differentially methylated CpGs (dmCpGs) were determined, and sodium bisulfite pyrosequencing was used to validate the sarcopenia‐associated dmCpGs. Human primary myoblasts (n = 6) isolated from vastus lateralis muscle biopsies from male individuals from HSSe were treated with the EZH2 inhibitor GSK343 to assess how perturbations in epigenetic processes may impact myoblast differentiation and fusion, measured by PAX7 and MYHC immunocytochemistry, and mitochondrial bioenergetics determined using the Seahorse XF96. RESULTS: Sarcopenia was associated with differential methylation at 176 dmCpGs (false discovery rate ≤ 0.05) and 141 differentially methylated regions (Stouffer ≤ 0.05). The sarcopenia‐associated dmCpGs were enriched in genes associated with myotube fusion (P = 1.40E‐03), oxidative phosphorylation (P = 2.78E‐02), and voltage‐gated calcium channels (P = 1.59E‐04). ALMi was associated with 71 dmCpGs, grip strength with 49 dmCpGs, and gait speed with 23 dmCpGs (false discovery rate ≤ 0.05). There was significant overlap between the dmCpGs associated with sarcopenia and ALMi (P = 3.4E‐35), sarcopenia and gait speed (P = 4.78E‐03), and sarcopenia and grip strength (P = 7.55E‐06). There was also an over‐representation of the sarcopenia, ALMi, grip strength, and gait speed‐associated dmCpGs with sites of H3K27 trimethylation (all P ≤ 0.05) and amongst EZH2 target genes (all P ≤ 0.05). Furthermore, treatment of human primary myoblasts with the EZH2 inhibitor GSK343 inhibitor led to an increase in PAX7 expression (P ≤ 0.05), decreased myotube fusion (P = 0.043), and an increase in ATP production (P = 0.008), with alterations in the DNA methylation of genes involved in oxidative phosphorylation and myogenesis. CONCLUSIONS: These findings show that differences in the muscle methylome are associated with sarcopenia and individual measures of muscle mass, strength, and function in older individuals. This suggests that changes in the epigenetic regulation of genes may contribute to impaired muscle function in later life. |
format | Online Article Text |
id | pubmed-8818655 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88186552022-02-09 Epigenome‐wide association study of sarcopenia: findings from the Hertfordshire Sarcopenia Study (HSS) Antoun, Elie Garratt, Emma S. Taddei, Andrea Burton, Mark A. Barton, Sheila J. Titcombe, Phil Westbury, Leo D. Baczynska, Alicia Migliavacca, Eugenia Feige, Jerome N. Sydall, Holly E. Dennison, Elaine Dodds, Richard Roberts, Helen C. Richardson, Peter Sayer, Avan A. Shaw, Sarah Cooper, Cyrus Holbrook, Joanna D. Patel, Harnish P. Godfrey, Keith M. Lillycrop, Karen A. J Cachexia Sarcopenia Muscle Original Articles: Clinical BACKGROUND: Sarcopenia is the age‐related loss of muscle mass, strength, and function. Epigenetic processes such as DNA methylation, which integrate both genetic and environmental exposures, have been suggested to contribute to the development of sarcopenia. This study aimed to determine whether differences in the muscle methylome are associated with sarcopenia and its component measures: grip strength, appendicular lean mass index (ALMi), and gait speed. METHODS: Using the Infinium Human MethylationEPIC BeadChip, we measured DNA methylation in vastus lateralis muscle biopsies of 83 male participants (12 with sarcopenia) with a mean (standard deviation) age of 75.7 (3.6) years from the Hertfordshire Sarcopenia Study (HSS) and Hertfordshire Sarcopenia Study extension (HSSe) and examined associations with sarcopenia and its components. Pathway, histone mark, and transcription factor enrichment of the differentially methylated CpGs (dmCpGs) were determined, and sodium bisulfite pyrosequencing was used to validate the sarcopenia‐associated dmCpGs. Human primary myoblasts (n = 6) isolated from vastus lateralis muscle biopsies from male individuals from HSSe were treated with the EZH2 inhibitor GSK343 to assess how perturbations in epigenetic processes may impact myoblast differentiation and fusion, measured by PAX7 and MYHC immunocytochemistry, and mitochondrial bioenergetics determined using the Seahorse XF96. RESULTS: Sarcopenia was associated with differential methylation at 176 dmCpGs (false discovery rate ≤ 0.05) and 141 differentially methylated regions (Stouffer ≤ 0.05). The sarcopenia‐associated dmCpGs were enriched in genes associated with myotube fusion (P = 1.40E‐03), oxidative phosphorylation (P = 2.78E‐02), and voltage‐gated calcium channels (P = 1.59E‐04). ALMi was associated with 71 dmCpGs, grip strength with 49 dmCpGs, and gait speed with 23 dmCpGs (false discovery rate ≤ 0.05). There was significant overlap between the dmCpGs associated with sarcopenia and ALMi (P = 3.4E‐35), sarcopenia and gait speed (P = 4.78E‐03), and sarcopenia and grip strength (P = 7.55E‐06). There was also an over‐representation of the sarcopenia, ALMi, grip strength, and gait speed‐associated dmCpGs with sites of H3K27 trimethylation (all P ≤ 0.05) and amongst EZH2 target genes (all P ≤ 0.05). Furthermore, treatment of human primary myoblasts with the EZH2 inhibitor GSK343 inhibitor led to an increase in PAX7 expression (P ≤ 0.05), decreased myotube fusion (P = 0.043), and an increase in ATP production (P = 0.008), with alterations in the DNA methylation of genes involved in oxidative phosphorylation and myogenesis. CONCLUSIONS: These findings show that differences in the muscle methylome are associated with sarcopenia and individual measures of muscle mass, strength, and function in older individuals. This suggests that changes in the epigenetic regulation of genes may contribute to impaired muscle function in later life. John Wiley and Sons Inc. 2021-12-04 2022-02 /pmc/articles/PMC8818655/ /pubmed/34862756 http://dx.doi.org/10.1002/jcsm.12876 Text en © 2021 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of Society on Sarcopenia, Cachexia and Wasting Disorders. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles: Clinical Antoun, Elie Garratt, Emma S. Taddei, Andrea Burton, Mark A. Barton, Sheila J. Titcombe, Phil Westbury, Leo D. Baczynska, Alicia Migliavacca, Eugenia Feige, Jerome N. Sydall, Holly E. Dennison, Elaine Dodds, Richard Roberts, Helen C. Richardson, Peter Sayer, Avan A. Shaw, Sarah Cooper, Cyrus Holbrook, Joanna D. Patel, Harnish P. Godfrey, Keith M. Lillycrop, Karen A. Epigenome‐wide association study of sarcopenia: findings from the Hertfordshire Sarcopenia Study (HSS) |
title | Epigenome‐wide association study of sarcopenia: findings from the Hertfordshire Sarcopenia Study (HSS) |
title_full | Epigenome‐wide association study of sarcopenia: findings from the Hertfordshire Sarcopenia Study (HSS) |
title_fullStr | Epigenome‐wide association study of sarcopenia: findings from the Hertfordshire Sarcopenia Study (HSS) |
title_full_unstemmed | Epigenome‐wide association study of sarcopenia: findings from the Hertfordshire Sarcopenia Study (HSS) |
title_short | Epigenome‐wide association study of sarcopenia: findings from the Hertfordshire Sarcopenia Study (HSS) |
title_sort | epigenome‐wide association study of sarcopenia: findings from the hertfordshire sarcopenia study (hss) |
topic | Original Articles: Clinical |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818655/ https://www.ncbi.nlm.nih.gov/pubmed/34862756 http://dx.doi.org/10.1002/jcsm.12876 |
work_keys_str_mv | AT antounelie epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT garrattemmas epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT taddeiandrea epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT burtonmarka epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT bartonsheilaj epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT titcombephil epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT westburyleod epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT baczynskaalicia epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT migliavaccaeugenia epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT feigejeromen epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT sydallhollye epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT dennisonelaine epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT doddsrichard epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT robertshelenc epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT richardsonpeter epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT sayeravana epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT shawsarah epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT coopercyrus epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT holbrookjoannad epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT patelharnishp epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT godfreykeithm epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT lillycropkarena epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss AT epigenomewideassociationstudyofsarcopeniafindingsfromthehertfordshiresarcopeniastudyhss |