Cargando…

Histology-Verified Intracranial Artery Calcification and Its Clinical Relevance With Cerebrovascular Disease

Intracranial artery calcification (IAC) was regarded as a proxy for intracranial atherosclerosis (ICAS). IAC could be easily detected on routine computer tomography (CT), which was neglected by clinicians in the previous years. The evolution of advanced imaging technologies, especially vessel wall s...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Heng, Yang, Wenjie, Chen, Xiangyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818681/
https://www.ncbi.nlm.nih.gov/pubmed/35140673
http://dx.doi.org/10.3389/fneur.2021.789035
Descripción
Sumario:Intracranial artery calcification (IAC) was regarded as a proxy for intracranial atherosclerosis (ICAS). IAC could be easily detected on routine computer tomography (CT), which was neglected by clinicians in the previous years. The evolution of advanced imaging technologies, especially vessel wall scanning using high resolution-magnetic resonance imaging (HR-MRI), has aroused the interest of researchers to further explore the characteristics and clinical impacts of IAC. Recent histological evidence acquired from the human cerebral artery specimens demonstrated that IAC could mainly involve two layers: the intima and the media. Accumulating evidence from histological and clinical imaging studies verified that intimal calcification is more associated with ICAS, while medial calcification, especially the internal elastic lamina, contributes to arterial stiffness rather than ICAS. Considering the highly improved abilities of novel imaging technologies in differentiating intimal and medial calcification within the large intracranial arteries, this review aimed to describe the histological and imaging features of two types of IAC, as well as the risk factors, the hemodynamic influences, and other clinical impacts of IAC occurring in intimal or media layers.