Cargando…
WSSNet: Aortic Wall Shear Stress Estimation Using Deep Learning on 4D Flow MRI
Wall shear stress (WSS) is an important contributor to vessel wall remodeling and atherosclerosis. However, image-based WSS estimation from 4D Flow MRI underestimates true WSS values, and the accuracy is dependent on spatial resolution, which is limited in 4D Flow MRI. To address this, we present a...
Autores principales: | Ferdian, Edward, Dubowitz, David J., Mauger, Charlene A., Wang, Alan, Young, Alistair A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818720/ https://www.ncbi.nlm.nih.gov/pubmed/35141290 http://dx.doi.org/10.3389/fcvm.2021.769927 |
Ejemplares similares
-
Super-resolution 4D flow MRI to quantify aortic regurgitation using computational fluid dynamics and deep learning
por: Long, Derek, et al.
Publicado: (2023) -
Right Ventricular Flow Vorticity Relationships With Biventricular Shape in Adult Tetralogy of Fallot
por: Elsayed, Ayah, et al.
Publicado: (2022) -
4D-flow MRI derived wall shear stress for the risk stratification of bicuspid aortic valve aortopathy: A systematic review
por: Qin, Jiaxing Jason, et al.
Publicado: (2023) -
Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis
por: Suinesiaputra, Avan, et al.
Publicado: (2022) -
Accuracy of MRI wall shear stress estimation
por: Petersson, Sven, et al.
Publicado: (2012)