Cargando…
Functionalized Multi-Walled Carbon Nanotube–Based Aptasensors for Diclofenac Detection
Driven by the increasing concern about the risk of diclofenac (DCF) residues as water pollutants in the aqueous environment and the growing need for its trace determination, a simple but sensitive electrochemical aptasensor for the trace detection of DCF was developed. To construct the aptasensor, t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818859/ https://www.ncbi.nlm.nih.gov/pubmed/35141204 http://dx.doi.org/10.3389/fchem.2021.812909 |
_version_ | 1784645922785853440 |
---|---|
author | Zou, Yi Griveau, Sophie Ringuedé, Armelle Bedioui, Fethi Richard, Cyrille Slim, Cyrine |
author_facet | Zou, Yi Griveau, Sophie Ringuedé, Armelle Bedioui, Fethi Richard, Cyrille Slim, Cyrine |
author_sort | Zou, Yi |
collection | PubMed |
description | Driven by the increasing concern about the risk of diclofenac (DCF) residues as water pollutants in the aqueous environment and the growing need for its trace determination, a simple but sensitive electrochemical aptasensor for the trace detection of DCF was developed. To construct the aptasensor, the amine-terminated DCF aptamer was covalently immobilized on the surface of the carboxylic acid–functionalized multi-walled carbon nanotube (f-MWCNT)–modified glassy carbon electrode (GCE) through EDC/NHS chemistry. The f-MWCNTs provide a reliable matrix for aptamer immobilization with high grafting density, while the aptamer serves as a biorecognition probe for DCF. The obtained aptasensor was incubated with DCF solutions at different concentrations and was then investigated by electrochemical impedance spectroscopy (EIS). It displays two linear ranges of concentration for DCF detection, from 250 fM to 1pM and from 1 pM to 500 nM with an extremely low detection limit of 162 fM. Also, the developed biosensor shows great reproducibility, acceptable stability, and reliable selectivity. Therefore, it offers a simple but effective aptasensor construction strategy for trace detection of DCF and is anticipated to show great potential for environmental applications. |
format | Online Article Text |
id | pubmed-8818859 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88188592022-02-08 Functionalized Multi-Walled Carbon Nanotube–Based Aptasensors for Diclofenac Detection Zou, Yi Griveau, Sophie Ringuedé, Armelle Bedioui, Fethi Richard, Cyrille Slim, Cyrine Front Chem Chemistry Driven by the increasing concern about the risk of diclofenac (DCF) residues as water pollutants in the aqueous environment and the growing need for its trace determination, a simple but sensitive electrochemical aptasensor for the trace detection of DCF was developed. To construct the aptasensor, the amine-terminated DCF aptamer was covalently immobilized on the surface of the carboxylic acid–functionalized multi-walled carbon nanotube (f-MWCNT)–modified glassy carbon electrode (GCE) through EDC/NHS chemistry. The f-MWCNTs provide a reliable matrix for aptamer immobilization with high grafting density, while the aptamer serves as a biorecognition probe for DCF. The obtained aptasensor was incubated with DCF solutions at different concentrations and was then investigated by electrochemical impedance spectroscopy (EIS). It displays two linear ranges of concentration for DCF detection, from 250 fM to 1pM and from 1 pM to 500 nM with an extremely low detection limit of 162 fM. Also, the developed biosensor shows great reproducibility, acceptable stability, and reliable selectivity. Therefore, it offers a simple but effective aptasensor construction strategy for trace detection of DCF and is anticipated to show great potential for environmental applications. Frontiers Media S.A. 2022-01-24 /pmc/articles/PMC8818859/ /pubmed/35141204 http://dx.doi.org/10.3389/fchem.2021.812909 Text en Copyright © 2022 Zou, Griveau, Ringuedé, Bedioui, Richard and Slim. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Chemistry Zou, Yi Griveau, Sophie Ringuedé, Armelle Bedioui, Fethi Richard, Cyrille Slim, Cyrine Functionalized Multi-Walled Carbon Nanotube–Based Aptasensors for Diclofenac Detection |
title | Functionalized Multi-Walled Carbon Nanotube–Based Aptasensors for Diclofenac Detection |
title_full | Functionalized Multi-Walled Carbon Nanotube–Based Aptasensors for Diclofenac Detection |
title_fullStr | Functionalized Multi-Walled Carbon Nanotube–Based Aptasensors for Diclofenac Detection |
title_full_unstemmed | Functionalized Multi-Walled Carbon Nanotube–Based Aptasensors for Diclofenac Detection |
title_short | Functionalized Multi-Walled Carbon Nanotube–Based Aptasensors for Diclofenac Detection |
title_sort | functionalized multi-walled carbon nanotube–based aptasensors for diclofenac detection |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8818859/ https://www.ncbi.nlm.nih.gov/pubmed/35141204 http://dx.doi.org/10.3389/fchem.2021.812909 |
work_keys_str_mv | AT zouyi functionalizedmultiwalledcarbonnanotubebasedaptasensorsfordiclofenacdetection AT griveausophie functionalizedmultiwalledcarbonnanotubebasedaptasensorsfordiclofenacdetection AT ringuedearmelle functionalizedmultiwalledcarbonnanotubebasedaptasensorsfordiclofenacdetection AT bediouifethi functionalizedmultiwalledcarbonnanotubebasedaptasensorsfordiclofenacdetection AT richardcyrille functionalizedmultiwalledcarbonnanotubebasedaptasensorsfordiclofenacdetection AT slimcyrine functionalizedmultiwalledcarbonnanotubebasedaptasensorsfordiclofenacdetection |