Cargando…

Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway

Symbioses between angiosperms and rhizobia or arbuscular mycorrhizal fungi are controlled through a conserved signaling pathway. Microbe-derived, chitin-based elicitors activate plant cell surface receptors and trigger nuclear calcium oscillations, which are decoded by a calcium/calmodulin-dependent...

Descripción completa

Detalles Bibliográficos
Autores principales: Kleist, Thomas J., Bortolazzo, Anthony, Keyser, Zachary P., Perera, Adele M., Irving, Thomas B., Venkateshwaran, Muthusubramanian, Atanjaoui, Fatiha, Tang, Ren-Jie, Maeda, Junko, Cartwright, Heather N., Christianson, Michael L., Lemaux, Peggy G., Luan, Sheng, Ané, Jean-Michel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819110/
https://www.ncbi.nlm.nih.gov/pubmed/35146383
http://dx.doi.org/10.1016/j.isci.2022.103754
_version_ 1784645983906299904
author Kleist, Thomas J.
Bortolazzo, Anthony
Keyser, Zachary P.
Perera, Adele M.
Irving, Thomas B.
Venkateshwaran, Muthusubramanian
Atanjaoui, Fatiha
Tang, Ren-Jie
Maeda, Junko
Cartwright, Heather N.
Christianson, Michael L.
Lemaux, Peggy G.
Luan, Sheng
Ané, Jean-Michel
author_facet Kleist, Thomas J.
Bortolazzo, Anthony
Keyser, Zachary P.
Perera, Adele M.
Irving, Thomas B.
Venkateshwaran, Muthusubramanian
Atanjaoui, Fatiha
Tang, Ren-Jie
Maeda, Junko
Cartwright, Heather N.
Christianson, Michael L.
Lemaux, Peggy G.
Luan, Sheng
Ané, Jean-Michel
author_sort Kleist, Thomas J.
collection PubMed
description Symbioses between angiosperms and rhizobia or arbuscular mycorrhizal fungi are controlled through a conserved signaling pathway. Microbe-derived, chitin-based elicitors activate plant cell surface receptors and trigger nuclear calcium oscillations, which are decoded by a calcium/calmodulin-dependent protein kinase (CCaMK) and its target transcription factor interacting protein of DMI3 (IPD3). Genes encoding CCaMK and IPD3 have been lost in multiple non-mycorrhizal plant lineages yet retained among non-mycorrhizal mosses. Here, we demonstrated that the moss Physcomitrium is equipped with a bona fide CCaMK that can functionally complement a Medicago loss-of-function mutant. Conservation of regulatory phosphosites allowed us to generate predicted hyperactive forms of Physcomitrium CCaMK and IPD3. Overexpression of synthetically activated CCaMK or IPD3 in Physcomitrium led to abscisic acid (ABA) accumulation and ectopic development of brood cells, which are asexual propagules that facilitate escape from local abiotic stresses. We therefore propose a functional role for Physcomitrium CCaMK-IPD3 in stress-associated developmental reprogramming
format Online
Article
Text
id pubmed-8819110
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-88191102022-02-09 Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway Kleist, Thomas J. Bortolazzo, Anthony Keyser, Zachary P. Perera, Adele M. Irving, Thomas B. Venkateshwaran, Muthusubramanian Atanjaoui, Fatiha Tang, Ren-Jie Maeda, Junko Cartwright, Heather N. Christianson, Michael L. Lemaux, Peggy G. Luan, Sheng Ané, Jean-Michel iScience Article Symbioses between angiosperms and rhizobia or arbuscular mycorrhizal fungi are controlled through a conserved signaling pathway. Microbe-derived, chitin-based elicitors activate plant cell surface receptors and trigger nuclear calcium oscillations, which are decoded by a calcium/calmodulin-dependent protein kinase (CCaMK) and its target transcription factor interacting protein of DMI3 (IPD3). Genes encoding CCaMK and IPD3 have been lost in multiple non-mycorrhizal plant lineages yet retained among non-mycorrhizal mosses. Here, we demonstrated that the moss Physcomitrium is equipped with a bona fide CCaMK that can functionally complement a Medicago loss-of-function mutant. Conservation of regulatory phosphosites allowed us to generate predicted hyperactive forms of Physcomitrium CCaMK and IPD3. Overexpression of synthetically activated CCaMK or IPD3 in Physcomitrium led to abscisic acid (ABA) accumulation and ectopic development of brood cells, which are asexual propagules that facilitate escape from local abiotic stresses. We therefore propose a functional role for Physcomitrium CCaMK-IPD3 in stress-associated developmental reprogramming Elsevier 2022-01-11 /pmc/articles/PMC8819110/ /pubmed/35146383 http://dx.doi.org/10.1016/j.isci.2022.103754 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kleist, Thomas J.
Bortolazzo, Anthony
Keyser, Zachary P.
Perera, Adele M.
Irving, Thomas B.
Venkateshwaran, Muthusubramanian
Atanjaoui, Fatiha
Tang, Ren-Jie
Maeda, Junko
Cartwright, Heather N.
Christianson, Michael L.
Lemaux, Peggy G.
Luan, Sheng
Ané, Jean-Michel
Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway
title Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway
title_full Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway
title_fullStr Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway
title_full_unstemmed Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway
title_short Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway
title_sort stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819110/
https://www.ncbi.nlm.nih.gov/pubmed/35146383
http://dx.doi.org/10.1016/j.isci.2022.103754
work_keys_str_mv AT kleistthomasj stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway
AT bortolazzoanthony stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway
AT keyserzacharyp stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway
AT pereraadelem stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway
AT irvingthomasb stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway
AT venkateshwaranmuthusubramanian stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway
AT atanjaouifatiha stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway
AT tangrenjie stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway
AT maedajunko stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway
AT cartwrightheathern stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway
AT christiansonmichaell stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway
AT lemauxpeggyg stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway
AT luansheng stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway
AT anejeanmichel stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway