Cargando…
Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway
Symbioses between angiosperms and rhizobia or arbuscular mycorrhizal fungi are controlled through a conserved signaling pathway. Microbe-derived, chitin-based elicitors activate plant cell surface receptors and trigger nuclear calcium oscillations, which are decoded by a calcium/calmodulin-dependent...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819110/ https://www.ncbi.nlm.nih.gov/pubmed/35146383 http://dx.doi.org/10.1016/j.isci.2022.103754 |
_version_ | 1784645983906299904 |
---|---|
author | Kleist, Thomas J. Bortolazzo, Anthony Keyser, Zachary P. Perera, Adele M. Irving, Thomas B. Venkateshwaran, Muthusubramanian Atanjaoui, Fatiha Tang, Ren-Jie Maeda, Junko Cartwright, Heather N. Christianson, Michael L. Lemaux, Peggy G. Luan, Sheng Ané, Jean-Michel |
author_facet | Kleist, Thomas J. Bortolazzo, Anthony Keyser, Zachary P. Perera, Adele M. Irving, Thomas B. Venkateshwaran, Muthusubramanian Atanjaoui, Fatiha Tang, Ren-Jie Maeda, Junko Cartwright, Heather N. Christianson, Michael L. Lemaux, Peggy G. Luan, Sheng Ané, Jean-Michel |
author_sort | Kleist, Thomas J. |
collection | PubMed |
description | Symbioses between angiosperms and rhizobia or arbuscular mycorrhizal fungi are controlled through a conserved signaling pathway. Microbe-derived, chitin-based elicitors activate plant cell surface receptors and trigger nuclear calcium oscillations, which are decoded by a calcium/calmodulin-dependent protein kinase (CCaMK) and its target transcription factor interacting protein of DMI3 (IPD3). Genes encoding CCaMK and IPD3 have been lost in multiple non-mycorrhizal plant lineages yet retained among non-mycorrhizal mosses. Here, we demonstrated that the moss Physcomitrium is equipped with a bona fide CCaMK that can functionally complement a Medicago loss-of-function mutant. Conservation of regulatory phosphosites allowed us to generate predicted hyperactive forms of Physcomitrium CCaMK and IPD3. Overexpression of synthetically activated CCaMK or IPD3 in Physcomitrium led to abscisic acid (ABA) accumulation and ectopic development of brood cells, which are asexual propagules that facilitate escape from local abiotic stresses. We therefore propose a functional role for Physcomitrium CCaMK-IPD3 in stress-associated developmental reprogramming |
format | Online Article Text |
id | pubmed-8819110 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-88191102022-02-09 Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway Kleist, Thomas J. Bortolazzo, Anthony Keyser, Zachary P. Perera, Adele M. Irving, Thomas B. Venkateshwaran, Muthusubramanian Atanjaoui, Fatiha Tang, Ren-Jie Maeda, Junko Cartwright, Heather N. Christianson, Michael L. Lemaux, Peggy G. Luan, Sheng Ané, Jean-Michel iScience Article Symbioses between angiosperms and rhizobia or arbuscular mycorrhizal fungi are controlled through a conserved signaling pathway. Microbe-derived, chitin-based elicitors activate plant cell surface receptors and trigger nuclear calcium oscillations, which are decoded by a calcium/calmodulin-dependent protein kinase (CCaMK) and its target transcription factor interacting protein of DMI3 (IPD3). Genes encoding CCaMK and IPD3 have been lost in multiple non-mycorrhizal plant lineages yet retained among non-mycorrhizal mosses. Here, we demonstrated that the moss Physcomitrium is equipped with a bona fide CCaMK that can functionally complement a Medicago loss-of-function mutant. Conservation of regulatory phosphosites allowed us to generate predicted hyperactive forms of Physcomitrium CCaMK and IPD3. Overexpression of synthetically activated CCaMK or IPD3 in Physcomitrium led to abscisic acid (ABA) accumulation and ectopic development of brood cells, which are asexual propagules that facilitate escape from local abiotic stresses. We therefore propose a functional role for Physcomitrium CCaMK-IPD3 in stress-associated developmental reprogramming Elsevier 2022-01-11 /pmc/articles/PMC8819110/ /pubmed/35146383 http://dx.doi.org/10.1016/j.isci.2022.103754 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kleist, Thomas J. Bortolazzo, Anthony Keyser, Zachary P. Perera, Adele M. Irving, Thomas B. Venkateshwaran, Muthusubramanian Atanjaoui, Fatiha Tang, Ren-Jie Maeda, Junko Cartwright, Heather N. Christianson, Michael L. Lemaux, Peggy G. Luan, Sheng Ané, Jean-Michel Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway |
title | Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway |
title_full | Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway |
title_fullStr | Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway |
title_full_unstemmed | Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway |
title_short | Stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway |
title_sort | stress-associated developmental reprogramming in moss protonemata by synthetic activation of the common symbiosis pathway |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819110/ https://www.ncbi.nlm.nih.gov/pubmed/35146383 http://dx.doi.org/10.1016/j.isci.2022.103754 |
work_keys_str_mv | AT kleistthomasj stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway AT bortolazzoanthony stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway AT keyserzacharyp stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway AT pereraadelem stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway AT irvingthomasb stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway AT venkateshwaranmuthusubramanian stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway AT atanjaouifatiha stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway AT tangrenjie stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway AT maedajunko stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway AT cartwrightheathern stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway AT christiansonmichaell stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway AT lemauxpeggyg stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway AT luansheng stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway AT anejeanmichel stressassociateddevelopmentalreprogramminginmossprotonematabysyntheticactivationofthecommonsymbiosispathway |