Cargando…
Dvl2 facilitates the coordination of NF‐κB and Wnt signaling to promote colitis‐associated colorectal progression
Colitis‐associated colorectal cancer (CAC) arises due to prolonged inflammation and has distinct molecular events compared with sporadic colorectal cancer (CRC). Although inflammatory NF‐κB signaling was activated by pro‐inflammatory cytokines (such as TNFα) in early stages of CAC, Wnt/β‐catenin sig...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819304/ https://www.ncbi.nlm.nih.gov/pubmed/34807493 http://dx.doi.org/10.1111/cas.15206 |
Sumario: | Colitis‐associated colorectal cancer (CAC) arises due to prolonged inflammation and has distinct molecular events compared with sporadic colorectal cancer (CRC). Although inflammatory NF‐κB signaling was activated by pro‐inflammatory cytokines (such as TNFα) in early stages of CAC, Wnt/β‐catenin signaling later appears to function as a key regulator of CAC progression. However, the exact mechanism responsible for the cross‐regulation between these 2 pathways remains unclear. Here, we found reciprocal inhibition between NF‐κB and Wnt/β‐catenin signaling in CAC samples, and the Dvl2, an adaptor protein of Wnt/β‐catenin signaling, is responsible for NF‐κB inhibition. Mechanistically, Dvl2 interacts with the C‐terminus of tumor necrosis factor receptor 1 (TNFRI) and mediates TNFRI endocytosis, leading to NF‐κB signal inhibition. In addition, increased infiltration of the pro‐inflammatory cytokine interleukin‐13 (IL‐13) is responsible for upregulating Dvl2 expression through STAT6. Targeting STAT6 effectively decreases Dvl2 levels and restrains colony formation of cancer cells. These findings demonstrate a unique role for Dvl2 in TNFRI endocytosis, which facilitates the coordination of NF‐κB and Wnt to promote CAC progression. |
---|