Cargando…
Application of empirical mode decomposition to improve deep learning for US GDP data forecasting
The application of deep learning methods to construct deep neural networks for the prediction of future econometric trends and econometric data has come to receive a lot of research attention. However, it has been found that the long short-term memory (LSTM) model is unstable and overly complex. It...
Autor principal: | Lin, Shih-Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819532/ https://www.ncbi.nlm.nih.gov/pubmed/35146147 http://dx.doi.org/10.1016/j.heliyon.2022.e08748 |
Ejemplares similares
-
Empirical mode decomposition using deep learning model for financial market forecasting
por: Jin, Zebin, et al.
Publicado: (2022) -
A Hybrid Model for Coronavirus Disease 2019 Forecasting Based on Ensemble Empirical Mode Decomposition and Deep Learning
por: Liu, Shidi, et al.
Publicado: (2022) -
An Empirical Mode Decomposition Fuzzy Forecast Model for COVID-19
por: Chen, Bo-Lun, et al.
Publicado: (2022) -
An Empirical Mode Decomposition Fuzzy Forecast Model for Air Quality
por: Jiang, Wenxin, et al.
Publicado: (2022) -
GDP Forecasting: Machine Learning, Linear or Autoregression?
por: Maccarrone, Giovanni, et al.
Publicado: (2021)