Cargando…
A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation
OBJECTIVE: To develop and validate a prognostic model for in-hospital mortality after four days based on age, fever at admission and five haematological parameters routinely measured in hospitalized Covid-19 patients during the first four days after admission. METHODS: Haematological parameters meas...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819729/ https://www.ncbi.nlm.nih.gov/pubmed/35141170 http://dx.doi.org/10.3389/fcimb.2021.795026 |
_version_ | 1784646108907044864 |
---|---|
author | Heber, Stefan Pereyra, David Schrottmaier, Waltraud C. Kammerer, Kerstin Santol, Jonas Rumpf, Benedikt Pawelka, Erich Hanna, Markus Scholz, Alexander Liu, Markus Hell, Agnes Heiplik, Klara Lickefett, Benno Havervall, Sebastian Traugott, Marianna T. Neuböck, Matthias J. Schörgenhofer, Christian Seitz, Tamara Firbas, Christa Karolyi, Mario Weiss, Günter Jilma, Bernd Thålin, Charlotte Bellmann-Weiler, Rosa Salzer, Helmut J. F. Szepannek, Gero Fischer, Michael J. M. Zoufaly, Alexander Gleiss, Andreas Assinger, Alice |
author_facet | Heber, Stefan Pereyra, David Schrottmaier, Waltraud C. Kammerer, Kerstin Santol, Jonas Rumpf, Benedikt Pawelka, Erich Hanna, Markus Scholz, Alexander Liu, Markus Hell, Agnes Heiplik, Klara Lickefett, Benno Havervall, Sebastian Traugott, Marianna T. Neuböck, Matthias J. Schörgenhofer, Christian Seitz, Tamara Firbas, Christa Karolyi, Mario Weiss, Günter Jilma, Bernd Thålin, Charlotte Bellmann-Weiler, Rosa Salzer, Helmut J. F. Szepannek, Gero Fischer, Michael J. M. Zoufaly, Alexander Gleiss, Andreas Assinger, Alice |
author_sort | Heber, Stefan |
collection | PubMed |
description | OBJECTIVE: To develop and validate a prognostic model for in-hospital mortality after four days based on age, fever at admission and five haematological parameters routinely measured in hospitalized Covid-19 patients during the first four days after admission. METHODS: Haematological parameters measured during the first 4 days after admission were subjected to a linear mixed model to obtain patient-specific intercepts and slopes for each parameter. A prediction model was built using logistic regression with variable selection and shrinkage factor estimation supported by bootstrapping. Model development was based on 481 survivors and 97 non-survivors, hospitalized before the occurrence of mutations. Internal validation was done by 10-fold cross-validation. The model was temporally-externally validated in 299 survivors and 42 non-survivors hospitalized when the Alpha variant (B.1.1.7) was prevalent. RESULTS: The final model included age, fever on admission as well as the slope or intercept of lactate dehydrogenase, platelet count, C-reactive protein, and creatinine. Tenfold cross validation resulted in a mean area under the receiver operating characteristic curve (AUROC) of 0.92, a mean calibration slope of 1.0023 and a Brier score of 0.076. At temporal-external validation, application of the previously developed model showed an AUROC of 0.88, a calibration slope of 0.95 and a Brier score of 0.073. Regarding the relative importance of the variables, the (apparent) variation in mortality explained by the six variables deduced from the haematological parameters measured during the first four days is higher (explained variation 0.295) than that of age (0.210). CONCLUSIONS: The presented model requires only variables routinely acquired in hospitals, which allows immediate and wide-spread use as a decision support for earlier discharge of low-risk patients to reduce the burden on the health care system. CLINICAL TRIAL REGISTRATION: Austrian Coronavirus Adaptive Clinical Trial (ACOVACT); ClinicalTrials.gov, identifier NCT04351724. |
format | Online Article Text |
id | pubmed-8819729 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88197292022-02-08 A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation Heber, Stefan Pereyra, David Schrottmaier, Waltraud C. Kammerer, Kerstin Santol, Jonas Rumpf, Benedikt Pawelka, Erich Hanna, Markus Scholz, Alexander Liu, Markus Hell, Agnes Heiplik, Klara Lickefett, Benno Havervall, Sebastian Traugott, Marianna T. Neuböck, Matthias J. Schörgenhofer, Christian Seitz, Tamara Firbas, Christa Karolyi, Mario Weiss, Günter Jilma, Bernd Thålin, Charlotte Bellmann-Weiler, Rosa Salzer, Helmut J. F. Szepannek, Gero Fischer, Michael J. M. Zoufaly, Alexander Gleiss, Andreas Assinger, Alice Front Cell Infect Microbiol Cellular and Infection Microbiology OBJECTIVE: To develop and validate a prognostic model for in-hospital mortality after four days based on age, fever at admission and five haematological parameters routinely measured in hospitalized Covid-19 patients during the first four days after admission. METHODS: Haematological parameters measured during the first 4 days after admission were subjected to a linear mixed model to obtain patient-specific intercepts and slopes for each parameter. A prediction model was built using logistic regression with variable selection and shrinkage factor estimation supported by bootstrapping. Model development was based on 481 survivors and 97 non-survivors, hospitalized before the occurrence of mutations. Internal validation was done by 10-fold cross-validation. The model was temporally-externally validated in 299 survivors and 42 non-survivors hospitalized when the Alpha variant (B.1.1.7) was prevalent. RESULTS: The final model included age, fever on admission as well as the slope or intercept of lactate dehydrogenase, platelet count, C-reactive protein, and creatinine. Tenfold cross validation resulted in a mean area under the receiver operating characteristic curve (AUROC) of 0.92, a mean calibration slope of 1.0023 and a Brier score of 0.076. At temporal-external validation, application of the previously developed model showed an AUROC of 0.88, a calibration slope of 0.95 and a Brier score of 0.073. Regarding the relative importance of the variables, the (apparent) variation in mortality explained by the six variables deduced from the haematological parameters measured during the first four days is higher (explained variation 0.295) than that of age (0.210). CONCLUSIONS: The presented model requires only variables routinely acquired in hospitals, which allows immediate and wide-spread use as a decision support for earlier discharge of low-risk patients to reduce the burden on the health care system. CLINICAL TRIAL REGISTRATION: Austrian Coronavirus Adaptive Clinical Trial (ACOVACT); ClinicalTrials.gov, identifier NCT04351724. Frontiers Media S.A. 2022-01-24 /pmc/articles/PMC8819729/ /pubmed/35141170 http://dx.doi.org/10.3389/fcimb.2021.795026 Text en Copyright © 2022 Heber, Pereyra, Schrottmaier, Kammerer, Santol, Rumpf, Pawelka, Hanna, Scholz, Liu, Hell, Heiplik, Lickefett, Havervall, Traugott, Neuböck, Schörgenhofer, Seitz, Firbas, Karolyi, Weiss, Jilma, Thålin, Bellmann-Weiler, Salzer, Szepannek, Fischer, Zoufaly, Gleiss and Assinger https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cellular and Infection Microbiology Heber, Stefan Pereyra, David Schrottmaier, Waltraud C. Kammerer, Kerstin Santol, Jonas Rumpf, Benedikt Pawelka, Erich Hanna, Markus Scholz, Alexander Liu, Markus Hell, Agnes Heiplik, Klara Lickefett, Benno Havervall, Sebastian Traugott, Marianna T. Neuböck, Matthias J. Schörgenhofer, Christian Seitz, Tamara Firbas, Christa Karolyi, Mario Weiss, Günter Jilma, Bernd Thålin, Charlotte Bellmann-Weiler, Rosa Salzer, Helmut J. F. Szepannek, Gero Fischer, Michael J. M. Zoufaly, Alexander Gleiss, Andreas Assinger, Alice A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation |
title | A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation |
title_full | A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation |
title_fullStr | A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation |
title_full_unstemmed | A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation |
title_short | A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation |
title_sort | model predicting mortality of hospitalized covid-19 patients four days after admission: development, internal and temporal-external validation |
topic | Cellular and Infection Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819729/ https://www.ncbi.nlm.nih.gov/pubmed/35141170 http://dx.doi.org/10.3389/fcimb.2021.795026 |
work_keys_str_mv | AT heberstefan amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT pereyradavid amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT schrottmaierwaltraudc amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT kammererkerstin amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT santoljonas amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT rumpfbenedikt amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT pawelkaerich amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT hannamarkus amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT scholzalexander amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT liumarkus amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT hellagnes amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT heiplikklara amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT lickefettbenno amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT havervallsebastian amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT traugottmariannat amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT neubockmatthiasj amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT schorgenhoferchristian amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT seitztamara amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT firbaschrista amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT karolyimario amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT weissgunter amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT jilmabernd amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT thalincharlotte amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT bellmannweilerrosa amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT salzerhelmutjf amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT szepannekgero amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT fischermichaeljm amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT zoufalyalexander amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT gleissandreas amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT assingeralice amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT heberstefan modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT pereyradavid modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT schrottmaierwaltraudc modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT kammererkerstin modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT santoljonas modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT rumpfbenedikt modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT pawelkaerich modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT hannamarkus modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT scholzalexander modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT liumarkus modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT hellagnes modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT heiplikklara modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT lickefettbenno modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT havervallsebastian modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT traugottmariannat modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT neubockmatthiasj modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT schorgenhoferchristian modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT seitztamara modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT firbaschrista modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT karolyimario modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT weissgunter modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT jilmabernd modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT thalincharlotte modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT bellmannweilerrosa modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT salzerhelmutjf modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT szepannekgero modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT fischermichaeljm modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT zoufalyalexander modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT gleissandreas modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation AT assingeralice modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation |