Cargando…

A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation

OBJECTIVE: To develop and validate a prognostic model for in-hospital mortality after four days based on age, fever at admission and five haematological parameters routinely measured in hospitalized Covid-19 patients during the first four days after admission. METHODS: Haematological parameters meas...

Descripción completa

Detalles Bibliográficos
Autores principales: Heber, Stefan, Pereyra, David, Schrottmaier, Waltraud C., Kammerer, Kerstin, Santol, Jonas, Rumpf, Benedikt, Pawelka, Erich, Hanna, Markus, Scholz, Alexander, Liu, Markus, Hell, Agnes, Heiplik, Klara, Lickefett, Benno, Havervall, Sebastian, Traugott, Marianna T., Neuböck, Matthias J., Schörgenhofer, Christian, Seitz, Tamara, Firbas, Christa, Karolyi, Mario, Weiss, Günter, Jilma, Bernd, Thålin, Charlotte, Bellmann-Weiler, Rosa, Salzer, Helmut J. F., Szepannek, Gero, Fischer, Michael J. M., Zoufaly, Alexander, Gleiss, Andreas, Assinger, Alice
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819729/
https://www.ncbi.nlm.nih.gov/pubmed/35141170
http://dx.doi.org/10.3389/fcimb.2021.795026
_version_ 1784646108907044864
author Heber, Stefan
Pereyra, David
Schrottmaier, Waltraud C.
Kammerer, Kerstin
Santol, Jonas
Rumpf, Benedikt
Pawelka, Erich
Hanna, Markus
Scholz, Alexander
Liu, Markus
Hell, Agnes
Heiplik, Klara
Lickefett, Benno
Havervall, Sebastian
Traugott, Marianna T.
Neuböck, Matthias J.
Schörgenhofer, Christian
Seitz, Tamara
Firbas, Christa
Karolyi, Mario
Weiss, Günter
Jilma, Bernd
Thålin, Charlotte
Bellmann-Weiler, Rosa
Salzer, Helmut J. F.
Szepannek, Gero
Fischer, Michael J. M.
Zoufaly, Alexander
Gleiss, Andreas
Assinger, Alice
author_facet Heber, Stefan
Pereyra, David
Schrottmaier, Waltraud C.
Kammerer, Kerstin
Santol, Jonas
Rumpf, Benedikt
Pawelka, Erich
Hanna, Markus
Scholz, Alexander
Liu, Markus
Hell, Agnes
Heiplik, Klara
Lickefett, Benno
Havervall, Sebastian
Traugott, Marianna T.
Neuböck, Matthias J.
Schörgenhofer, Christian
Seitz, Tamara
Firbas, Christa
Karolyi, Mario
Weiss, Günter
Jilma, Bernd
Thålin, Charlotte
Bellmann-Weiler, Rosa
Salzer, Helmut J. F.
Szepannek, Gero
Fischer, Michael J. M.
Zoufaly, Alexander
Gleiss, Andreas
Assinger, Alice
author_sort Heber, Stefan
collection PubMed
description OBJECTIVE: To develop and validate a prognostic model for in-hospital mortality after four days based on age, fever at admission and five haematological parameters routinely measured in hospitalized Covid-19 patients during the first four days after admission. METHODS: Haematological parameters measured during the first 4 days after admission were subjected to a linear mixed model to obtain patient-specific intercepts and slopes for each parameter. A prediction model was built using logistic regression with variable selection and shrinkage factor estimation supported by bootstrapping. Model development was based on 481 survivors and 97 non-survivors, hospitalized before the occurrence of mutations. Internal validation was done by 10-fold cross-validation. The model was temporally-externally validated in 299 survivors and 42 non-survivors hospitalized when the Alpha variant (B.1.1.7) was prevalent. RESULTS: The final model included age, fever on admission as well as the slope or intercept of lactate dehydrogenase, platelet count, C-reactive protein, and creatinine. Tenfold cross validation resulted in a mean area under the receiver operating characteristic curve (AUROC) of 0.92, a mean calibration slope of 1.0023 and a Brier score of 0.076. At temporal-external validation, application of the previously developed model showed an AUROC of 0.88, a calibration slope of 0.95 and a Brier score of 0.073. Regarding the relative importance of the variables, the (apparent) variation in mortality explained by the six variables deduced from the haematological parameters measured during the first four days is higher (explained variation 0.295) than that of age (0.210). CONCLUSIONS: The presented model requires only variables routinely acquired in hospitals, which allows immediate and wide-spread use as a decision support for earlier discharge of low-risk patients to reduce the burden on the health care system. CLINICAL TRIAL REGISTRATION: Austrian Coronavirus Adaptive Clinical Trial (ACOVACT); ClinicalTrials.gov, identifier NCT04351724.
format Online
Article
Text
id pubmed-8819729
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-88197292022-02-08 A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation Heber, Stefan Pereyra, David Schrottmaier, Waltraud C. Kammerer, Kerstin Santol, Jonas Rumpf, Benedikt Pawelka, Erich Hanna, Markus Scholz, Alexander Liu, Markus Hell, Agnes Heiplik, Klara Lickefett, Benno Havervall, Sebastian Traugott, Marianna T. Neuböck, Matthias J. Schörgenhofer, Christian Seitz, Tamara Firbas, Christa Karolyi, Mario Weiss, Günter Jilma, Bernd Thålin, Charlotte Bellmann-Weiler, Rosa Salzer, Helmut J. F. Szepannek, Gero Fischer, Michael J. M. Zoufaly, Alexander Gleiss, Andreas Assinger, Alice Front Cell Infect Microbiol Cellular and Infection Microbiology OBJECTIVE: To develop and validate a prognostic model for in-hospital mortality after four days based on age, fever at admission and five haematological parameters routinely measured in hospitalized Covid-19 patients during the first four days after admission. METHODS: Haematological parameters measured during the first 4 days after admission were subjected to a linear mixed model to obtain patient-specific intercepts and slopes for each parameter. A prediction model was built using logistic regression with variable selection and shrinkage factor estimation supported by bootstrapping. Model development was based on 481 survivors and 97 non-survivors, hospitalized before the occurrence of mutations. Internal validation was done by 10-fold cross-validation. The model was temporally-externally validated in 299 survivors and 42 non-survivors hospitalized when the Alpha variant (B.1.1.7) was prevalent. RESULTS: The final model included age, fever on admission as well as the slope or intercept of lactate dehydrogenase, platelet count, C-reactive protein, and creatinine. Tenfold cross validation resulted in a mean area under the receiver operating characteristic curve (AUROC) of 0.92, a mean calibration slope of 1.0023 and a Brier score of 0.076. At temporal-external validation, application of the previously developed model showed an AUROC of 0.88, a calibration slope of 0.95 and a Brier score of 0.073. Regarding the relative importance of the variables, the (apparent) variation in mortality explained by the six variables deduced from the haematological parameters measured during the first four days is higher (explained variation 0.295) than that of age (0.210). CONCLUSIONS: The presented model requires only variables routinely acquired in hospitals, which allows immediate and wide-spread use as a decision support for earlier discharge of low-risk patients to reduce the burden on the health care system. CLINICAL TRIAL REGISTRATION: Austrian Coronavirus Adaptive Clinical Trial (ACOVACT); ClinicalTrials.gov, identifier NCT04351724. Frontiers Media S.A. 2022-01-24 /pmc/articles/PMC8819729/ /pubmed/35141170 http://dx.doi.org/10.3389/fcimb.2021.795026 Text en Copyright © 2022 Heber, Pereyra, Schrottmaier, Kammerer, Santol, Rumpf, Pawelka, Hanna, Scholz, Liu, Hell, Heiplik, Lickefett, Havervall, Traugott, Neuböck, Schörgenhofer, Seitz, Firbas, Karolyi, Weiss, Jilma, Thålin, Bellmann-Weiler, Salzer, Szepannek, Fischer, Zoufaly, Gleiss and Assinger https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cellular and Infection Microbiology
Heber, Stefan
Pereyra, David
Schrottmaier, Waltraud C.
Kammerer, Kerstin
Santol, Jonas
Rumpf, Benedikt
Pawelka, Erich
Hanna, Markus
Scholz, Alexander
Liu, Markus
Hell, Agnes
Heiplik, Klara
Lickefett, Benno
Havervall, Sebastian
Traugott, Marianna T.
Neuböck, Matthias J.
Schörgenhofer, Christian
Seitz, Tamara
Firbas, Christa
Karolyi, Mario
Weiss, Günter
Jilma, Bernd
Thålin, Charlotte
Bellmann-Weiler, Rosa
Salzer, Helmut J. F.
Szepannek, Gero
Fischer, Michael J. M.
Zoufaly, Alexander
Gleiss, Andreas
Assinger, Alice
A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation
title A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation
title_full A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation
title_fullStr A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation
title_full_unstemmed A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation
title_short A Model Predicting Mortality of Hospitalized Covid-19 Patients Four Days After Admission: Development, Internal and Temporal-External Validation
title_sort model predicting mortality of hospitalized covid-19 patients four days after admission: development, internal and temporal-external validation
topic Cellular and Infection Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819729/
https://www.ncbi.nlm.nih.gov/pubmed/35141170
http://dx.doi.org/10.3389/fcimb.2021.795026
work_keys_str_mv AT heberstefan amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT pereyradavid amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT schrottmaierwaltraudc amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT kammererkerstin amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT santoljonas amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT rumpfbenedikt amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT pawelkaerich amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT hannamarkus amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT scholzalexander amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT liumarkus amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT hellagnes amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT heiplikklara amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT lickefettbenno amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT havervallsebastian amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT traugottmariannat amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT neubockmatthiasj amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT schorgenhoferchristian amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT seitztamara amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT firbaschrista amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT karolyimario amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT weissgunter amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT jilmabernd amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT thalincharlotte amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT bellmannweilerrosa amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT salzerhelmutjf amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT szepannekgero amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT fischermichaeljm amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT zoufalyalexander amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT gleissandreas amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT assingeralice amodelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT heberstefan modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT pereyradavid modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT schrottmaierwaltraudc modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT kammererkerstin modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT santoljonas modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT rumpfbenedikt modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT pawelkaerich modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT hannamarkus modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT scholzalexander modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT liumarkus modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT hellagnes modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT heiplikklara modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT lickefettbenno modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT havervallsebastian modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT traugottmariannat modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT neubockmatthiasj modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT schorgenhoferchristian modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT seitztamara modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT firbaschrista modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT karolyimario modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT weissgunter modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT jilmabernd modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT thalincharlotte modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT bellmannweilerrosa modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT salzerhelmutjf modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT szepannekgero modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT fischermichaeljm modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT zoufalyalexander modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT gleissandreas modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation
AT assingeralice modelpredictingmortalityofhospitalizedcovid19patientsfourdaysafteradmissiondevelopmentinternalandtemporalexternalvalidation