Cargando…
RFtest: A Robust and Flexible Community-Level Test for Microbiome Data Powerfully Detects Phylogenetically Clustered Signals
Random forest is considered as one of the most successful machine learning algorithms, which has been widely used to construct microbiome-based predictive models. However, its use as a statistical testing method has not been explored. In this study, we propose “Random Forest Test” (RFtest), a global...
Autores principales: | Zhang, Lujun, Wang, Yanshan, Chen, Jingwen, Chen, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819960/ https://www.ncbi.nlm.nih.gov/pubmed/35140735 http://dx.doi.org/10.3389/fgene.2021.749573 |
Ejemplares similares
-
An Adaptive and Robust Test for Microbial Community Analysis
por: Chen, Qingyu, et al.
Publicado: (2022) -
Robust Reference Powered Association Test of Genome-Wide Association Studies
por: Wang, Yi, et al.
Publicado: (2019) -
Hypothesis Testing With Rank Conditions in Phylogenetics
por: Long, Colby, et al.
Publicado: (2021) -
MiRKAT-MC: A Distance-Based Microbiome Kernel Association Test With Multi-Categorical Outcomes
por: Jiang, Zhiwen, et al.
Publicado: (2022) -
A Distance-Based Kernel Association Test Based on the Generalized Linear Mixed Model for Correlated Microbiome Studies
por: Koh, Hyunwook, et al.
Publicado: (2019)