Cargando…

A multi-scanner neuroimaging data harmonization using RAVEL and ComBat

Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images...

Descripción completa

Detalles Bibliográficos
Autores principales: Torbati, Mahbaneh Eshaghzadeh, Minhas, Davneet S., Ahmad, Ghasan, O’Connor, Erin E., Muschelli, John, Laymon, Charles M., Yang, Zixi, Cohen, Ann D., Aizenstein, Howard J., Klunk, William E., Christian, Bradley T., Hwang, Seong Jae, Crainiceanu, Ciprian M., Tudorascu, Dana L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820090/
https://www.ncbi.nlm.nih.gov/pubmed/34736996
http://dx.doi.org/10.1016/j.neuroimage.2021.118703
_version_ 1784646173467869184
author Torbati, Mahbaneh Eshaghzadeh
Minhas, Davneet S.
Ahmad, Ghasan
O’Connor, Erin E.
Muschelli, John
Laymon, Charles M.
Yang, Zixi
Cohen, Ann D.
Aizenstein, Howard J.
Klunk, William E.
Christian, Bradley T.
Hwang, Seong Jae
Crainiceanu, Ciprian M.
Tudorascu, Dana L.
author_facet Torbati, Mahbaneh Eshaghzadeh
Minhas, Davneet S.
Ahmad, Ghasan
O’Connor, Erin E.
Muschelli, John
Laymon, Charles M.
Yang, Zixi
Cohen, Ann D.
Aizenstein, Howard J.
Klunk, William E.
Christian, Bradley T.
Hwang, Seong Jae
Crainiceanu, Ciprian M.
Tudorascu, Dana L.
author_sort Torbati, Mahbaneh Eshaghzadeh
collection PubMed
description Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images obtained from different scanners contain substantial technical biases). Here we evaluate and compare results of data analysis methods without any data transformation (RAW), with intensity normalization using RAVEL, with regional harmonization methods using ComBat, and a combination of RAVEL and ComBat. Methods are evaluated on a unique sample of 16 study participants who were scanned on both 1.5T and 3T scanners a few months apart. Neuroradiological evaluation was conducted for 7 different regions of interest (ROI’s) pertinent to Alzheimer’s disease (AD). Cortical measures and results indicate that: (1) RAVEL substantially improved the reproducibility of image intensities; (2) ComBat is preferred over RAVEL and the RAVEL-ComBat combination in terms of regional level harmonization due to more consistent harmonization across subjects and image-derived measures; (3) RAVEL and ComBat substantially reduced bias compared to analysis of RAW images, but RAVEL also resulted in larger variance; and (4) the larger root mean square deviation (RMSD) of RAVEL compared to ComBat is due mainly to its larger variance.
format Online
Article
Text
id pubmed-8820090
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-88200902022-02-07 A multi-scanner neuroimaging data harmonization using RAVEL and ComBat Torbati, Mahbaneh Eshaghzadeh Minhas, Davneet S. Ahmad, Ghasan O’Connor, Erin E. Muschelli, John Laymon, Charles M. Yang, Zixi Cohen, Ann D. Aizenstein, Howard J. Klunk, William E. Christian, Bradley T. Hwang, Seong Jae Crainiceanu, Ciprian M. Tudorascu, Dana L. Neuroimage Article Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images obtained from different scanners contain substantial technical biases). Here we evaluate and compare results of data analysis methods without any data transformation (RAW), with intensity normalization using RAVEL, with regional harmonization methods using ComBat, and a combination of RAVEL and ComBat. Methods are evaluated on a unique sample of 16 study participants who were scanned on both 1.5T and 3T scanners a few months apart. Neuroradiological evaluation was conducted for 7 different regions of interest (ROI’s) pertinent to Alzheimer’s disease (AD). Cortical measures and results indicate that: (1) RAVEL substantially improved the reproducibility of image intensities; (2) ComBat is preferred over RAVEL and the RAVEL-ComBat combination in terms of regional level harmonization due to more consistent harmonization across subjects and image-derived measures; (3) RAVEL and ComBat substantially reduced bias compared to analysis of RAW images, but RAVEL also resulted in larger variance; and (4) the larger root mean square deviation (RMSD) of RAVEL compared to ComBat is due mainly to its larger variance. 2021-12-15 2021-11-01 /pmc/articles/PMC8820090/ /pubmed/34736996 http://dx.doi.org/10.1016/j.neuroimage.2021.118703 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) )
spellingShingle Article
Torbati, Mahbaneh Eshaghzadeh
Minhas, Davneet S.
Ahmad, Ghasan
O’Connor, Erin E.
Muschelli, John
Laymon, Charles M.
Yang, Zixi
Cohen, Ann D.
Aizenstein, Howard J.
Klunk, William E.
Christian, Bradley T.
Hwang, Seong Jae
Crainiceanu, Ciprian M.
Tudorascu, Dana L.
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
title A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
title_full A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
title_fullStr A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
title_full_unstemmed A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
title_short A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
title_sort multi-scanner neuroimaging data harmonization using ravel and combat
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820090/
https://www.ncbi.nlm.nih.gov/pubmed/34736996
http://dx.doi.org/10.1016/j.neuroimage.2021.118703
work_keys_str_mv AT torbatimahbaneheshaghzadeh amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT minhasdavneets amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT ahmadghasan amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT oconnorerine amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT muschellijohn amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT laymoncharlesm amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT yangzixi amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT cohenannd amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT aizensteinhowardj amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT klunkwilliame amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT christianbradleyt amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT hwangseongjae amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT crainiceanuciprianm amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT tudorascudanal amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT torbatimahbaneheshaghzadeh multiscannerneuroimagingdataharmonizationusingravelandcombat
AT minhasdavneets multiscannerneuroimagingdataharmonizationusingravelandcombat
AT ahmadghasan multiscannerneuroimagingdataharmonizationusingravelandcombat
AT oconnorerine multiscannerneuroimagingdataharmonizationusingravelandcombat
AT muschellijohn multiscannerneuroimagingdataharmonizationusingravelandcombat
AT laymoncharlesm multiscannerneuroimagingdataharmonizationusingravelandcombat
AT yangzixi multiscannerneuroimagingdataharmonizationusingravelandcombat
AT cohenannd multiscannerneuroimagingdataharmonizationusingravelandcombat
AT aizensteinhowardj multiscannerneuroimagingdataharmonizationusingravelandcombat
AT klunkwilliame multiscannerneuroimagingdataharmonizationusingravelandcombat
AT christianbradleyt multiscannerneuroimagingdataharmonizationusingravelandcombat
AT hwangseongjae multiscannerneuroimagingdataharmonizationusingravelandcombat
AT crainiceanuciprianm multiscannerneuroimagingdataharmonizationusingravelandcombat
AT tudorascudanal multiscannerneuroimagingdataharmonizationusingravelandcombat