Cargando…
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820090/ https://www.ncbi.nlm.nih.gov/pubmed/34736996 http://dx.doi.org/10.1016/j.neuroimage.2021.118703 |
_version_ | 1784646173467869184 |
---|---|
author | Torbati, Mahbaneh Eshaghzadeh Minhas, Davneet S. Ahmad, Ghasan O’Connor, Erin E. Muschelli, John Laymon, Charles M. Yang, Zixi Cohen, Ann D. Aizenstein, Howard J. Klunk, William E. Christian, Bradley T. Hwang, Seong Jae Crainiceanu, Ciprian M. Tudorascu, Dana L. |
author_facet | Torbati, Mahbaneh Eshaghzadeh Minhas, Davneet S. Ahmad, Ghasan O’Connor, Erin E. Muschelli, John Laymon, Charles M. Yang, Zixi Cohen, Ann D. Aizenstein, Howard J. Klunk, William E. Christian, Bradley T. Hwang, Seong Jae Crainiceanu, Ciprian M. Tudorascu, Dana L. |
author_sort | Torbati, Mahbaneh Eshaghzadeh |
collection | PubMed |
description | Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images obtained from different scanners contain substantial technical biases). Here we evaluate and compare results of data analysis methods without any data transformation (RAW), with intensity normalization using RAVEL, with regional harmonization methods using ComBat, and a combination of RAVEL and ComBat. Methods are evaluated on a unique sample of 16 study participants who were scanned on both 1.5T and 3T scanners a few months apart. Neuroradiological evaluation was conducted for 7 different regions of interest (ROI’s) pertinent to Alzheimer’s disease (AD). Cortical measures and results indicate that: (1) RAVEL substantially improved the reproducibility of image intensities; (2) ComBat is preferred over RAVEL and the RAVEL-ComBat combination in terms of regional level harmonization due to more consistent harmonization across subjects and image-derived measures; (3) RAVEL and ComBat substantially reduced bias compared to analysis of RAW images, but RAVEL also resulted in larger variance; and (4) the larger root mean square deviation (RMSD) of RAVEL compared to ComBat is due mainly to its larger variance. |
format | Online Article Text |
id | pubmed-8820090 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-88200902022-02-07 A multi-scanner neuroimaging data harmonization using RAVEL and ComBat Torbati, Mahbaneh Eshaghzadeh Minhas, Davneet S. Ahmad, Ghasan O’Connor, Erin E. Muschelli, John Laymon, Charles M. Yang, Zixi Cohen, Ann D. Aizenstein, Howard J. Klunk, William E. Christian, Bradley T. Hwang, Seong Jae Crainiceanu, Ciprian M. Tudorascu, Dana L. Neuroimage Article Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images obtained from different scanners contain substantial technical biases). Here we evaluate and compare results of data analysis methods without any data transformation (RAW), with intensity normalization using RAVEL, with regional harmonization methods using ComBat, and a combination of RAVEL and ComBat. Methods are evaluated on a unique sample of 16 study participants who were scanned on both 1.5T and 3T scanners a few months apart. Neuroradiological evaluation was conducted for 7 different regions of interest (ROI’s) pertinent to Alzheimer’s disease (AD). Cortical measures and results indicate that: (1) RAVEL substantially improved the reproducibility of image intensities; (2) ComBat is preferred over RAVEL and the RAVEL-ComBat combination in terms of regional level harmonization due to more consistent harmonization across subjects and image-derived measures; (3) RAVEL and ComBat substantially reduced bias compared to analysis of RAW images, but RAVEL also resulted in larger variance; and (4) the larger root mean square deviation (RMSD) of RAVEL compared to ComBat is due mainly to its larger variance. 2021-12-15 2021-11-01 /pmc/articles/PMC8820090/ /pubmed/34736996 http://dx.doi.org/10.1016/j.neuroimage.2021.118703 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ) |
spellingShingle | Article Torbati, Mahbaneh Eshaghzadeh Minhas, Davneet S. Ahmad, Ghasan O’Connor, Erin E. Muschelli, John Laymon, Charles M. Yang, Zixi Cohen, Ann D. Aizenstein, Howard J. Klunk, William E. Christian, Bradley T. Hwang, Seong Jae Crainiceanu, Ciprian M. Tudorascu, Dana L. A multi-scanner neuroimaging data harmonization using RAVEL and ComBat |
title | A multi-scanner neuroimaging data harmonization using RAVEL and ComBat |
title_full | A multi-scanner neuroimaging data harmonization using RAVEL and ComBat |
title_fullStr | A multi-scanner neuroimaging data harmonization using RAVEL and ComBat |
title_full_unstemmed | A multi-scanner neuroimaging data harmonization using RAVEL and ComBat |
title_short | A multi-scanner neuroimaging data harmonization using RAVEL and ComBat |
title_sort | multi-scanner neuroimaging data harmonization using ravel and combat |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820090/ https://www.ncbi.nlm.nih.gov/pubmed/34736996 http://dx.doi.org/10.1016/j.neuroimage.2021.118703 |
work_keys_str_mv | AT torbatimahbaneheshaghzadeh amultiscannerneuroimagingdataharmonizationusingravelandcombat AT minhasdavneets amultiscannerneuroimagingdataharmonizationusingravelandcombat AT ahmadghasan amultiscannerneuroimagingdataharmonizationusingravelandcombat AT oconnorerine amultiscannerneuroimagingdataharmonizationusingravelandcombat AT muschellijohn amultiscannerneuroimagingdataharmonizationusingravelandcombat AT laymoncharlesm amultiscannerneuroimagingdataharmonizationusingravelandcombat AT yangzixi amultiscannerneuroimagingdataharmonizationusingravelandcombat AT cohenannd amultiscannerneuroimagingdataharmonizationusingravelandcombat AT aizensteinhowardj amultiscannerneuroimagingdataharmonizationusingravelandcombat AT klunkwilliame amultiscannerneuroimagingdataharmonizationusingravelandcombat AT christianbradleyt amultiscannerneuroimagingdataharmonizationusingravelandcombat AT hwangseongjae amultiscannerneuroimagingdataharmonizationusingravelandcombat AT crainiceanuciprianm amultiscannerneuroimagingdataharmonizationusingravelandcombat AT tudorascudanal amultiscannerneuroimagingdataharmonizationusingravelandcombat AT torbatimahbaneheshaghzadeh multiscannerneuroimagingdataharmonizationusingravelandcombat AT minhasdavneets multiscannerneuroimagingdataharmonizationusingravelandcombat AT ahmadghasan multiscannerneuroimagingdataharmonizationusingravelandcombat AT oconnorerine multiscannerneuroimagingdataharmonizationusingravelandcombat AT muschellijohn multiscannerneuroimagingdataharmonizationusingravelandcombat AT laymoncharlesm multiscannerneuroimagingdataharmonizationusingravelandcombat AT yangzixi multiscannerneuroimagingdataharmonizationusingravelandcombat AT cohenannd multiscannerneuroimagingdataharmonizationusingravelandcombat AT aizensteinhowardj multiscannerneuroimagingdataharmonizationusingravelandcombat AT klunkwilliame multiscannerneuroimagingdataharmonizationusingravelandcombat AT christianbradleyt multiscannerneuroimagingdataharmonizationusingravelandcombat AT hwangseongjae multiscannerneuroimagingdataharmonizationusingravelandcombat AT crainiceanuciprianm multiscannerneuroimagingdataharmonizationusingravelandcombat AT tudorascudanal multiscannerneuroimagingdataharmonizationusingravelandcombat |