Cargando…
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images...
Autores principales: | Torbati, Mahbaneh Eshaghzadeh, Minhas, Davneet S., Ahmad, Ghasan, O’Connor, Erin E., Muschelli, John, Laymon, Charles M., Yang, Zixi, Cohen, Ann D., Aizenstein, Howard J., Klunk, William E., Christian, Bradley T., Hwang, Seong Jae, Crainiceanu, Ciprian M., Tudorascu, Dana L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820090/ https://www.ncbi.nlm.nih.gov/pubmed/34736996 http://dx.doi.org/10.1016/j.neuroimage.2021.118703 |
Ejemplares similares
-
MISPEL: A supervised deep learning harmonization method for multi-scanner neuroimaging data
por: Torbati, Mahbaneh Eshaghzadeh, et al.
Publicado: (2023) -
ComBat Harmonization: Empirical Bayes versus fully Bayes approaches
por: Reynolds, Maxwell, et al.
Publicado: (2023) -
Statistical Methods for Processing Neuroimaging Data from Two Different Sites with a Down Syndrome Population Application
por: Minhas, Davneet S., et al.
Publicado: (2020) -
Reproducibility and Bias in Healthy Brain Segmentation: Comparison of Two Popular Neuroimaging Platforms
por: Tudorascu, Dana L., et al.
Publicado: (2016) -
Characterization of point-spread function specification error on Geometric Transfer Matrix partial volume correction in [(11)C]PiB amyloid imaging
por: Laymon, Charles M., et al.
Publicado: (2021)