Cargando…

A network pharmacology approach to explore active compounds and pharmacological mechanisms of a patented Chinese herbal medicine in the treatment of endometriosis

OBJECTIVE: Endometriosis is a common benign disease in women of reproductive age. Qu’s formula (QUF) is a patented Chinese herbal medicine for treating endometriosis that has been proven to be effective in treating and preventing the recurrence of endometriosis. This study is aimed to discover its m...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yan, Zhu, Yuhang, Xie, Ningning, Wang, Hui, Wang, Fangfang, Zhou, Jue, Qu, Fan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820622/
https://www.ncbi.nlm.nih.gov/pubmed/35130311
http://dx.doi.org/10.1371/journal.pone.0263614
_version_ 1784646242168471552
author Wu, Yan
Zhu, Yuhang
Xie, Ningning
Wang, Hui
Wang, Fangfang
Zhou, Jue
Qu, Fan
author_facet Wu, Yan
Zhu, Yuhang
Xie, Ningning
Wang, Hui
Wang, Fangfang
Zhou, Jue
Qu, Fan
author_sort Wu, Yan
collection PubMed
description OBJECTIVE: Endometriosis is a common benign disease in women of reproductive age. Qu’s formula (QUF) is a patented Chinese herbal medicine for treating endometriosis that has been proven to be effective in treating and preventing the recurrence of endometriosis. This study is aimed to discover its molecular mechanism and to explore the potential drug targets. METHODS: A QUF target and endometriosis-related gene set was identified by the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) databases and five disease-gene databases. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed, and a protein–protein interaction (PPI) network was established to discover the potential mechanism. MalaCards was searched for targets and signaling pathways related to endometriosis, and the search results were also used to identify the key factors in QUF. Molecular docking was performed to visualize the interactions between the effective molecules and proteins encoded by critical genes. Cell experiments and molecular dynamics (MD) simulations were used to further validate the therapeutic effects of the active compounds in QUF on endometriosis. RESULTS: A compound-target network with 117 nodes (94 genes and 23 active compounds) and 224 edges was generated. The results of GO and KEGG analyses indicated that QUF could act by regulating the immune response, apoptosis and proliferation, oxidative stress, and angiogenesis. VEGFA, CXCL8, CCL2, IL1B and PTGS2 were selected for molecular docking analysis from two critical subnetworks with high correlation scores in MalaCards, and the active compounds of QUF had binding potential and high affinity for them. The mRNA expression levels of CCL2, IL1B and PTGS2 significantly decreased after treatment with quercetin. MD simulations showed that the combinations of quercetin and these proteins were relatively stable. CONCLUSION: The network pharmacological strategy integrates molecular docking to unravel the molecular mechanism by which QUF protects against endometriosis. Our findings not only confirm the clinical effectiveness of QUF but also provide a foundation for further experimental study.
format Online
Article
Text
id pubmed-8820622
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-88206222022-02-08 A network pharmacology approach to explore active compounds and pharmacological mechanisms of a patented Chinese herbal medicine in the treatment of endometriosis Wu, Yan Zhu, Yuhang Xie, Ningning Wang, Hui Wang, Fangfang Zhou, Jue Qu, Fan PLoS One Research Article OBJECTIVE: Endometriosis is a common benign disease in women of reproductive age. Qu’s formula (QUF) is a patented Chinese herbal medicine for treating endometriosis that has been proven to be effective in treating and preventing the recurrence of endometriosis. This study is aimed to discover its molecular mechanism and to explore the potential drug targets. METHODS: A QUF target and endometriosis-related gene set was identified by the Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) databases and five disease-gene databases. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed, and a protein–protein interaction (PPI) network was established to discover the potential mechanism. MalaCards was searched for targets and signaling pathways related to endometriosis, and the search results were also used to identify the key factors in QUF. Molecular docking was performed to visualize the interactions between the effective molecules and proteins encoded by critical genes. Cell experiments and molecular dynamics (MD) simulations were used to further validate the therapeutic effects of the active compounds in QUF on endometriosis. RESULTS: A compound-target network with 117 nodes (94 genes and 23 active compounds) and 224 edges was generated. The results of GO and KEGG analyses indicated that QUF could act by regulating the immune response, apoptosis and proliferation, oxidative stress, and angiogenesis. VEGFA, CXCL8, CCL2, IL1B and PTGS2 were selected for molecular docking analysis from two critical subnetworks with high correlation scores in MalaCards, and the active compounds of QUF had binding potential and high affinity for them. The mRNA expression levels of CCL2, IL1B and PTGS2 significantly decreased after treatment with quercetin. MD simulations showed that the combinations of quercetin and these proteins were relatively stable. CONCLUSION: The network pharmacological strategy integrates molecular docking to unravel the molecular mechanism by which QUF protects against endometriosis. Our findings not only confirm the clinical effectiveness of QUF but also provide a foundation for further experimental study. Public Library of Science 2022-02-07 /pmc/articles/PMC8820622/ /pubmed/35130311 http://dx.doi.org/10.1371/journal.pone.0263614 Text en © 2022 Wu et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Wu, Yan
Zhu, Yuhang
Xie, Ningning
Wang, Hui
Wang, Fangfang
Zhou, Jue
Qu, Fan
A network pharmacology approach to explore active compounds and pharmacological mechanisms of a patented Chinese herbal medicine in the treatment of endometriosis
title A network pharmacology approach to explore active compounds and pharmacological mechanisms of a patented Chinese herbal medicine in the treatment of endometriosis
title_full A network pharmacology approach to explore active compounds and pharmacological mechanisms of a patented Chinese herbal medicine in the treatment of endometriosis
title_fullStr A network pharmacology approach to explore active compounds and pharmacological mechanisms of a patented Chinese herbal medicine in the treatment of endometriosis
title_full_unstemmed A network pharmacology approach to explore active compounds and pharmacological mechanisms of a patented Chinese herbal medicine in the treatment of endometriosis
title_short A network pharmacology approach to explore active compounds and pharmacological mechanisms of a patented Chinese herbal medicine in the treatment of endometriosis
title_sort network pharmacology approach to explore active compounds and pharmacological mechanisms of a patented chinese herbal medicine in the treatment of endometriosis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820622/
https://www.ncbi.nlm.nih.gov/pubmed/35130311
http://dx.doi.org/10.1371/journal.pone.0263614
work_keys_str_mv AT wuyan anetworkpharmacologyapproachtoexploreactivecompoundsandpharmacologicalmechanismsofapatentedchineseherbalmedicineinthetreatmentofendometriosis
AT zhuyuhang anetworkpharmacologyapproachtoexploreactivecompoundsandpharmacologicalmechanismsofapatentedchineseherbalmedicineinthetreatmentofendometriosis
AT xieningning anetworkpharmacologyapproachtoexploreactivecompoundsandpharmacologicalmechanismsofapatentedchineseherbalmedicineinthetreatmentofendometriosis
AT wanghui anetworkpharmacologyapproachtoexploreactivecompoundsandpharmacologicalmechanismsofapatentedchineseherbalmedicineinthetreatmentofendometriosis
AT wangfangfang anetworkpharmacologyapproachtoexploreactivecompoundsandpharmacologicalmechanismsofapatentedchineseherbalmedicineinthetreatmentofendometriosis
AT zhoujue anetworkpharmacologyapproachtoexploreactivecompoundsandpharmacologicalmechanismsofapatentedchineseherbalmedicineinthetreatmentofendometriosis
AT qufan anetworkpharmacologyapproachtoexploreactivecompoundsandpharmacologicalmechanismsofapatentedchineseherbalmedicineinthetreatmentofendometriosis
AT wuyan networkpharmacologyapproachtoexploreactivecompoundsandpharmacologicalmechanismsofapatentedchineseherbalmedicineinthetreatmentofendometriosis
AT zhuyuhang networkpharmacologyapproachtoexploreactivecompoundsandpharmacologicalmechanismsofapatentedchineseherbalmedicineinthetreatmentofendometriosis
AT xieningning networkpharmacologyapproachtoexploreactivecompoundsandpharmacologicalmechanismsofapatentedchineseherbalmedicineinthetreatmentofendometriosis
AT wanghui networkpharmacologyapproachtoexploreactivecompoundsandpharmacologicalmechanismsofapatentedchineseherbalmedicineinthetreatmentofendometriosis
AT wangfangfang networkpharmacologyapproachtoexploreactivecompoundsandpharmacologicalmechanismsofapatentedchineseherbalmedicineinthetreatmentofendometriosis
AT zhoujue networkpharmacologyapproachtoexploreactivecompoundsandpharmacologicalmechanismsofapatentedchineseherbalmedicineinthetreatmentofendometriosis
AT qufan networkpharmacologyapproachtoexploreactivecompoundsandpharmacologicalmechanismsofapatentedchineseherbalmedicineinthetreatmentofendometriosis