Cargando…
AIME: Autoencoder-based integrative multi-omics data embedding that allows for confounder adjustments
In the integrative analyses of omics data, it is often of interest to extract data representation from one data type that best reflect its relations with another data type. This task is traditionally fulfilled by linear methods such as canonical correlation analysis (CCA) and partial least squares (...
Autor principal: | Yu, Tianwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820645/ https://www.ncbi.nlm.nih.gov/pubmed/35081109 http://dx.doi.org/10.1371/journal.pcbi.1009826 |
Ejemplares similares
-
Integrated multi-omics analysis of ovarian cancer using variational autoencoders
por: Hira, Muta Tah, et al.
Publicado: (2021) -
Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE)
por: Ma, Tianle, et al.
Publicado: (2019) -
Developing an Embedding, Koopman and Autoencoder Technologies-Based Multi-Omics Time Series Predictive Model (EKATP) for Systems Biology research
por: Liu, Suran, et al.
Publicado: (2021) -
A general framework for powerful confounder adjustment in omics association studies
por: Roy, Asmita, et al.
Publicado: (2023) -
Con-AAE: contrastive cycle adversarial autoencoders for single-cell multi-omics alignment and integration
por: Wang, Xuesong, et al.
Publicado: (2023)