Cargando…
Edge Detection-Based Feature Extraction for the Systems of Activity Recognition
Human activity recognition (HAR) is a fascinating and significant challenging task. Generally, the accuracy of HAR systems relies on the best features from the input frames. Mostly, the activity frames have the hostile noisy conditions that cannot be handled by most of the existing edge operators. I...
Autores principales: | Siddiqi, Muhammad Hameed, Alrashdi, Ibrahim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820868/ https://www.ncbi.nlm.nih.gov/pubmed/35140779 http://dx.doi.org/10.1155/2022/8222388 |
Ejemplares similares
-
Exploratory Data Analysis of Acceleration Signals to Select Light-Weight and Accurate Features for Real-Time Activity Recognition on Smartphones
por: Khan, Adil Mehmood, et al.
Publicado: (2013) -
Segmentation and Classification of Heart Angiographic Images Using Machine Learning Techniques
por: Abdullah,, et al.
Publicado: (2021) -
Hierarchical Recognition Scheme for Human Facial Expression Recognition Systems
por: Siddiqi, Muhammad Hameed, et al.
Publicado: (2013) -
Human Activity Recognition Using Gaussian Mixture Hidden Conditional Random Fields
por: Siddiqi, Muhammad Hameed, et al.
Publicado: (2019) -
New Opportunities, Challenges, and Applications of Edge-AI for Connected Healthcare in Internet of Medical Things for Smart Cities
por: Kamruzzaman, M. M., et al.
Publicado: (2022)