Cargando…
Interpretable Model Based on Pyramid Scene Parsing Features for Brain Tumor MRI Image Segmentation
Due to the black box model nature of convolutional neural networks, computer-aided diagnosis methods based on depth learning are usually poorly interpretable. Therefore, the diagnosis results obtained by these unexplained methods are difficult to gain the trust of patients and doctors, which limits...
Autores principales: | Zhao, Mingyang, Xin, Junchang, Wang, Zhongyang, Wang, Xinlei, Wang, Zhiqiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820931/ https://www.ncbi.nlm.nih.gov/pubmed/35140806 http://dx.doi.org/10.1155/2022/8000781 |
Ejemplares similares
-
NDCN-Brain: An Extensible Dynamic Functional Brain Network Model
por: Wang, Zhongyang, et al.
Publicado: (2022) -
Custom 3D fMRI Registration Template Construction Method Based on Time-Series Fusion
por: Wang, Zhongyang, et al.
Publicado: (2022) -
Voxelwise-based Brain Function Network using Multi-Graph Model
por: Wang, Zhongyang, et al.
Publicado: (2018) -
An Evolving Hypergraph Convolutional Network for the Diagnosis of Alzheimer’s Disease
por: Wang, Xinlei, et al.
Publicado: (2022) -
Road-Scene Parsing Based on Attentional Prototype-Matching
por: Chen, Xiaoyu, et al.
Publicado: (2022)