Cargando…

A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability

There is an inherent tension in Quantitative Systems Pharmacology (QSP) between the need to incorporate mathematical descriptions of complex physiology and drug targets with the necessity of developing robust, predictive and well-constrained models. In addition to this, there is no “gold standard” f...

Descripción completa

Detalles Bibliográficos
Autores principales: Sher, Anna, Niederer, Steven A., Mirams, Gary R., Kirpichnikova, Anna, Allen, Richard, Pathmanathan, Pras, Gavaghan, David J., van der Graaf, Piet H., Noble, Denis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821410/
https://www.ncbi.nlm.nih.gov/pubmed/35132487
http://dx.doi.org/10.1007/s11538-021-00982-5
_version_ 1784646396787294208
author Sher, Anna
Niederer, Steven A.
Mirams, Gary R.
Kirpichnikova, Anna
Allen, Richard
Pathmanathan, Pras
Gavaghan, David J.
van der Graaf, Piet H.
Noble, Denis
author_facet Sher, Anna
Niederer, Steven A.
Mirams, Gary R.
Kirpichnikova, Anna
Allen, Richard
Pathmanathan, Pras
Gavaghan, David J.
van der Graaf, Piet H.
Noble, Denis
author_sort Sher, Anna
collection PubMed
description There is an inherent tension in Quantitative Systems Pharmacology (QSP) between the need to incorporate mathematical descriptions of complex physiology and drug targets with the necessity of developing robust, predictive and well-constrained models. In addition to this, there is no “gold standard” for model development and assessment in QSP. Moreover, there can be confusion over terminology such as model and parameter identifiability; complex and simple models; virtual populations; and other concepts, which leads to potential miscommunication and misapplication of methodologies within modeling communities, both the QSP community and related disciplines. This perspective article highlights the pros and cons of using simple (often identifiable) vs. complex (more physiologically detailed but often non-identifiable) models, as well as aspects of parameter identifiability, sensitivity and inference methodologies for model development and analysis. The paper distills the central themes of the issue of identifiability and optimal model size and discusses open challenges.
format Online
Article
Text
id pubmed-8821410
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-88214102022-02-23 A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability Sher, Anna Niederer, Steven A. Mirams, Gary R. Kirpichnikova, Anna Allen, Richard Pathmanathan, Pras Gavaghan, David J. van der Graaf, Piet H. Noble, Denis Bull Math Biol Perspectives There is an inherent tension in Quantitative Systems Pharmacology (QSP) between the need to incorporate mathematical descriptions of complex physiology and drug targets with the necessity of developing robust, predictive and well-constrained models. In addition to this, there is no “gold standard” for model development and assessment in QSP. Moreover, there can be confusion over terminology such as model and parameter identifiability; complex and simple models; virtual populations; and other concepts, which leads to potential miscommunication and misapplication of methodologies within modeling communities, both the QSP community and related disciplines. This perspective article highlights the pros and cons of using simple (often identifiable) vs. complex (more physiologically detailed but often non-identifiable) models, as well as aspects of parameter identifiability, sensitivity and inference methodologies for model development and analysis. The paper distills the central themes of the issue of identifiability and optimal model size and discusses open challenges. Springer US 2022-02-07 2022 /pmc/articles/PMC8821410/ /pubmed/35132487 http://dx.doi.org/10.1007/s11538-021-00982-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Perspectives
Sher, Anna
Niederer, Steven A.
Mirams, Gary R.
Kirpichnikova, Anna
Allen, Richard
Pathmanathan, Pras
Gavaghan, David J.
van der Graaf, Piet H.
Noble, Denis
A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability
title A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability
title_full A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability
title_fullStr A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability
title_full_unstemmed A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability
title_short A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability
title_sort quantitative systems pharmacology perspective on the importance of parameter identifiability
topic Perspectives
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821410/
https://www.ncbi.nlm.nih.gov/pubmed/35132487
http://dx.doi.org/10.1007/s11538-021-00982-5
work_keys_str_mv AT sheranna aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT niedererstevena aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT miramsgaryr aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT kirpichnikovaanna aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT allenrichard aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT pathmanathanpras aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT gavaghandavidj aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT vandergraafpieth aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT nobledenis aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT sheranna quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT niedererstevena quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT miramsgaryr quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT kirpichnikovaanna quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT allenrichard quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT pathmanathanpras quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT gavaghandavidj quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT vandergraafpieth quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability
AT nobledenis quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability