Cargando…
A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability
There is an inherent tension in Quantitative Systems Pharmacology (QSP) between the need to incorporate mathematical descriptions of complex physiology and drug targets with the necessity of developing robust, predictive and well-constrained models. In addition to this, there is no “gold standard” f...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821410/ https://www.ncbi.nlm.nih.gov/pubmed/35132487 http://dx.doi.org/10.1007/s11538-021-00982-5 |
_version_ | 1784646396787294208 |
---|---|
author | Sher, Anna Niederer, Steven A. Mirams, Gary R. Kirpichnikova, Anna Allen, Richard Pathmanathan, Pras Gavaghan, David J. van der Graaf, Piet H. Noble, Denis |
author_facet | Sher, Anna Niederer, Steven A. Mirams, Gary R. Kirpichnikova, Anna Allen, Richard Pathmanathan, Pras Gavaghan, David J. van der Graaf, Piet H. Noble, Denis |
author_sort | Sher, Anna |
collection | PubMed |
description | There is an inherent tension in Quantitative Systems Pharmacology (QSP) between the need to incorporate mathematical descriptions of complex physiology and drug targets with the necessity of developing robust, predictive and well-constrained models. In addition to this, there is no “gold standard” for model development and assessment in QSP. Moreover, there can be confusion over terminology such as model and parameter identifiability; complex and simple models; virtual populations; and other concepts, which leads to potential miscommunication and misapplication of methodologies within modeling communities, both the QSP community and related disciplines. This perspective article highlights the pros and cons of using simple (often identifiable) vs. complex (more physiologically detailed but often non-identifiable) models, as well as aspects of parameter identifiability, sensitivity and inference methodologies for model development and analysis. The paper distills the central themes of the issue of identifiability and optimal model size and discusses open challenges. |
format | Online Article Text |
id | pubmed-8821410 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-88214102022-02-23 A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability Sher, Anna Niederer, Steven A. Mirams, Gary R. Kirpichnikova, Anna Allen, Richard Pathmanathan, Pras Gavaghan, David J. van der Graaf, Piet H. Noble, Denis Bull Math Biol Perspectives There is an inherent tension in Quantitative Systems Pharmacology (QSP) between the need to incorporate mathematical descriptions of complex physiology and drug targets with the necessity of developing robust, predictive and well-constrained models. In addition to this, there is no “gold standard” for model development and assessment in QSP. Moreover, there can be confusion over terminology such as model and parameter identifiability; complex and simple models; virtual populations; and other concepts, which leads to potential miscommunication and misapplication of methodologies within modeling communities, both the QSP community and related disciplines. This perspective article highlights the pros and cons of using simple (often identifiable) vs. complex (more physiologically detailed but often non-identifiable) models, as well as aspects of parameter identifiability, sensitivity and inference methodologies for model development and analysis. The paper distills the central themes of the issue of identifiability and optimal model size and discusses open challenges. Springer US 2022-02-07 2022 /pmc/articles/PMC8821410/ /pubmed/35132487 http://dx.doi.org/10.1007/s11538-021-00982-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Perspectives Sher, Anna Niederer, Steven A. Mirams, Gary R. Kirpichnikova, Anna Allen, Richard Pathmanathan, Pras Gavaghan, David J. van der Graaf, Piet H. Noble, Denis A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability |
title | A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability |
title_full | A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability |
title_fullStr | A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability |
title_full_unstemmed | A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability |
title_short | A Quantitative Systems Pharmacology Perspective on the Importance of Parameter Identifiability |
title_sort | quantitative systems pharmacology perspective on the importance of parameter identifiability |
topic | Perspectives |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821410/ https://www.ncbi.nlm.nih.gov/pubmed/35132487 http://dx.doi.org/10.1007/s11538-021-00982-5 |
work_keys_str_mv | AT sheranna aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT niedererstevena aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT miramsgaryr aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT kirpichnikovaanna aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT allenrichard aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT pathmanathanpras aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT gavaghandavidj aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT vandergraafpieth aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT nobledenis aquantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT sheranna quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT niedererstevena quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT miramsgaryr quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT kirpichnikovaanna quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT allenrichard quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT pathmanathanpras quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT gavaghandavidj quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT vandergraafpieth quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability AT nobledenis quantitativesystemspharmacologyperspectiveontheimportanceofparameteridentifiability |