Cargando…
Mathematical modelling to determine the greatest height of trees
This study aimed to analyse the critical height of a column whose weight varies vertically in order to obtain a simple scaling law for a tree where the weight distribution considered. We modelled trees as cantilevers that were fixed to the ground and formulated a self-buckling problem for various we...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821560/ https://www.ncbi.nlm.nih.gov/pubmed/35132088 http://dx.doi.org/10.1038/s41598-022-06041-w |
Sumario: | This study aimed to analyse the critical height of a column whose weight varies vertically in order to obtain a simple scaling law for a tree where the weight distribution considered. We modelled trees as cantilevers that were fixed to the ground and formulated a self-buckling problem for various weight distributions. A formula for calculating the critical height was derived in a simple form that did not include special functions. We obtained a theoretical clarification of the effect of the weight distribution of heavy columns on the buckling behaviour. A widely applicable scaling law for trees was obtained. We found that an actual tree manages to distribute the weight of its trunk and branches along its vertical extent in a manner that adequately secures its critical height. The method and findings of this study are applicable to a wide range of fields, such as the simplification of complicated buckling problems and the study of tree shape quantification. |
---|