Cargando…
Robust but weak winter atmospheric circulation response to future Arctic sea ice loss
The possibility that Arctic sea ice loss weakens mid-latitude westerlies, promoting more severe cold winters, has sparked more than a decade of scientific debate, with apparent support from observations but inconclusive modelling evidence. Here we show that sixteen models contributing to the Polar A...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821642/ https://www.ncbi.nlm.nih.gov/pubmed/35132058 http://dx.doi.org/10.1038/s41467-022-28283-y |
_version_ | 1784646443917639680 |
---|---|
author | Smith, D. M. Eade, R. Andrews, M. B. Ayres, H. Clark, A. Chripko, S. Deser, C. Dunstone, N. J. García-Serrano, J. Gastineau, G. Graff, L. S. Hardiman, S. C. He, B. Hermanson, L. Jung, T. Knight, J. Levine, X. Magnusdottir, G. Manzini, E. Matei, D. Mori, M. Msadek, R. Ortega, P. Peings, Y. Scaife, A. A. Screen, J. A. Seabrook, M. Semmler, T. Sigmond, M. Streffing, J. Sun, L. Walsh, A. |
author_facet | Smith, D. M. Eade, R. Andrews, M. B. Ayres, H. Clark, A. Chripko, S. Deser, C. Dunstone, N. J. García-Serrano, J. Gastineau, G. Graff, L. S. Hardiman, S. C. He, B. Hermanson, L. Jung, T. Knight, J. Levine, X. Magnusdottir, G. Manzini, E. Matei, D. Mori, M. Msadek, R. Ortega, P. Peings, Y. Scaife, A. A. Screen, J. A. Seabrook, M. Semmler, T. Sigmond, M. Streffing, J. Sun, L. Walsh, A. |
author_sort | Smith, D. M. |
collection | PubMed |
description | The possibility that Arctic sea ice loss weakens mid-latitude westerlies, promoting more severe cold winters, has sparked more than a decade of scientific debate, with apparent support from observations but inconclusive modelling evidence. Here we show that sixteen models contributing to the Polar Amplification Model Intercomparison Project simulate a weakening of mid-latitude westerlies in response to projected Arctic sea ice loss. We develop an emergent constraint based on eddy feedback, which is 1.2 to 3 times too weak in the models, suggesting that the real-world weakening lies towards the higher end of the model simulations. Still, the modelled response to Arctic sea ice loss is weak: the North Atlantic Oscillation response is similar in magnitude and offsets the projected response to increased greenhouse gases, but would only account for around 10% of variations in individual years. We further find that relationships between Arctic sea ice and atmospheric circulation have weakened recently in observations and are no longer inconsistent with those in models. |
format | Online Article Text |
id | pubmed-8821642 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-88216422022-02-18 Robust but weak winter atmospheric circulation response to future Arctic sea ice loss Smith, D. M. Eade, R. Andrews, M. B. Ayres, H. Clark, A. Chripko, S. Deser, C. Dunstone, N. J. García-Serrano, J. Gastineau, G. Graff, L. S. Hardiman, S. C. He, B. Hermanson, L. Jung, T. Knight, J. Levine, X. Magnusdottir, G. Manzini, E. Matei, D. Mori, M. Msadek, R. Ortega, P. Peings, Y. Scaife, A. A. Screen, J. A. Seabrook, M. Semmler, T. Sigmond, M. Streffing, J. Sun, L. Walsh, A. Nat Commun Article The possibility that Arctic sea ice loss weakens mid-latitude westerlies, promoting more severe cold winters, has sparked more than a decade of scientific debate, with apparent support from observations but inconclusive modelling evidence. Here we show that sixteen models contributing to the Polar Amplification Model Intercomparison Project simulate a weakening of mid-latitude westerlies in response to projected Arctic sea ice loss. We develop an emergent constraint based on eddy feedback, which is 1.2 to 3 times too weak in the models, suggesting that the real-world weakening lies towards the higher end of the model simulations. Still, the modelled response to Arctic sea ice loss is weak: the North Atlantic Oscillation response is similar in magnitude and offsets the projected response to increased greenhouse gases, but would only account for around 10% of variations in individual years. We further find that relationships between Arctic sea ice and atmospheric circulation have weakened recently in observations and are no longer inconsistent with those in models. Nature Publishing Group UK 2022-02-07 /pmc/articles/PMC8821642/ /pubmed/35132058 http://dx.doi.org/10.1038/s41467-022-28283-y Text en © Crown 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Smith, D. M. Eade, R. Andrews, M. B. Ayres, H. Clark, A. Chripko, S. Deser, C. Dunstone, N. J. García-Serrano, J. Gastineau, G. Graff, L. S. Hardiman, S. C. He, B. Hermanson, L. Jung, T. Knight, J. Levine, X. Magnusdottir, G. Manzini, E. Matei, D. Mori, M. Msadek, R. Ortega, P. Peings, Y. Scaife, A. A. Screen, J. A. Seabrook, M. Semmler, T. Sigmond, M. Streffing, J. Sun, L. Walsh, A. Robust but weak winter atmospheric circulation response to future Arctic sea ice loss |
title | Robust but weak winter atmospheric circulation response to future Arctic sea ice loss |
title_full | Robust but weak winter atmospheric circulation response to future Arctic sea ice loss |
title_fullStr | Robust but weak winter atmospheric circulation response to future Arctic sea ice loss |
title_full_unstemmed | Robust but weak winter atmospheric circulation response to future Arctic sea ice loss |
title_short | Robust but weak winter atmospheric circulation response to future Arctic sea ice loss |
title_sort | robust but weak winter atmospheric circulation response to future arctic sea ice loss |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821642/ https://www.ncbi.nlm.nih.gov/pubmed/35132058 http://dx.doi.org/10.1038/s41467-022-28283-y |
work_keys_str_mv | AT smithdm robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT eader robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT andrewsmb robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT ayresh robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT clarka robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT chripkos robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT deserc robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT dunstonenj robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT garciaserranoj robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT gastineaug robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT graffls robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT hardimansc robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT heb robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT hermansonl robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT jungt robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT knightj robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT levinex robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT magnusdottirg robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT manzinie robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT mateid robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT morim robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT msadekr robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT ortegap robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT peingsy robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT scaifeaa robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT screenja robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT seabrookm robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT semmlert robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT sigmondm robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT streffingj robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT sunl robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss AT walsha robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss |