Cargando…

Robust but weak winter atmospheric circulation response to future Arctic sea ice loss

The possibility that Arctic sea ice loss weakens mid-latitude westerlies, promoting more severe cold winters, has sparked more than a decade of scientific debate, with apparent support from observations but inconclusive modelling evidence. Here we show that sixteen models contributing to the Polar A...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, D. M., Eade, R., Andrews, M. B., Ayres, H., Clark, A., Chripko, S., Deser, C., Dunstone, N. J., García-Serrano, J., Gastineau, G., Graff, L. S., Hardiman, S. C., He, B., Hermanson, L., Jung, T., Knight, J., Levine, X., Magnusdottir, G., Manzini, E., Matei, D., Mori, M., Msadek, R., Ortega, P., Peings, Y., Scaife, A. A., Screen, J. A., Seabrook, M., Semmler, T., Sigmond, M., Streffing, J., Sun, L., Walsh, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821642/
https://www.ncbi.nlm.nih.gov/pubmed/35132058
http://dx.doi.org/10.1038/s41467-022-28283-y
_version_ 1784646443917639680
author Smith, D. M.
Eade, R.
Andrews, M. B.
Ayres, H.
Clark, A.
Chripko, S.
Deser, C.
Dunstone, N. J.
García-Serrano, J.
Gastineau, G.
Graff, L. S.
Hardiman, S. C.
He, B.
Hermanson, L.
Jung, T.
Knight, J.
Levine, X.
Magnusdottir, G.
Manzini, E.
Matei, D.
Mori, M.
Msadek, R.
Ortega, P.
Peings, Y.
Scaife, A. A.
Screen, J. A.
Seabrook, M.
Semmler, T.
Sigmond, M.
Streffing, J.
Sun, L.
Walsh, A.
author_facet Smith, D. M.
Eade, R.
Andrews, M. B.
Ayres, H.
Clark, A.
Chripko, S.
Deser, C.
Dunstone, N. J.
García-Serrano, J.
Gastineau, G.
Graff, L. S.
Hardiman, S. C.
He, B.
Hermanson, L.
Jung, T.
Knight, J.
Levine, X.
Magnusdottir, G.
Manzini, E.
Matei, D.
Mori, M.
Msadek, R.
Ortega, P.
Peings, Y.
Scaife, A. A.
Screen, J. A.
Seabrook, M.
Semmler, T.
Sigmond, M.
Streffing, J.
Sun, L.
Walsh, A.
author_sort Smith, D. M.
collection PubMed
description The possibility that Arctic sea ice loss weakens mid-latitude westerlies, promoting more severe cold winters, has sparked more than a decade of scientific debate, with apparent support from observations but inconclusive modelling evidence. Here we show that sixteen models contributing to the Polar Amplification Model Intercomparison Project simulate a weakening of mid-latitude westerlies in response to projected Arctic sea ice loss. We develop an emergent constraint based on eddy feedback, which is 1.2 to 3 times too weak in the models, suggesting that the real-world weakening lies towards the higher end of the model simulations. Still, the modelled response to Arctic sea ice loss is weak: the North Atlantic Oscillation response is similar in magnitude and offsets the projected response to increased greenhouse gases, but would only account for around 10% of variations in individual years. We further find that relationships between Arctic sea ice and atmospheric circulation have weakened recently in observations and are no longer inconsistent with those in models.
format Online
Article
Text
id pubmed-8821642
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-88216422022-02-18 Robust but weak winter atmospheric circulation response to future Arctic sea ice loss Smith, D. M. Eade, R. Andrews, M. B. Ayres, H. Clark, A. Chripko, S. Deser, C. Dunstone, N. J. García-Serrano, J. Gastineau, G. Graff, L. S. Hardiman, S. C. He, B. Hermanson, L. Jung, T. Knight, J. Levine, X. Magnusdottir, G. Manzini, E. Matei, D. Mori, M. Msadek, R. Ortega, P. Peings, Y. Scaife, A. A. Screen, J. A. Seabrook, M. Semmler, T. Sigmond, M. Streffing, J. Sun, L. Walsh, A. Nat Commun Article The possibility that Arctic sea ice loss weakens mid-latitude westerlies, promoting more severe cold winters, has sparked more than a decade of scientific debate, with apparent support from observations but inconclusive modelling evidence. Here we show that sixteen models contributing to the Polar Amplification Model Intercomparison Project simulate a weakening of mid-latitude westerlies in response to projected Arctic sea ice loss. We develop an emergent constraint based on eddy feedback, which is 1.2 to 3 times too weak in the models, suggesting that the real-world weakening lies towards the higher end of the model simulations. Still, the modelled response to Arctic sea ice loss is weak: the North Atlantic Oscillation response is similar in magnitude and offsets the projected response to increased greenhouse gases, but would only account for around 10% of variations in individual years. We further find that relationships between Arctic sea ice and atmospheric circulation have weakened recently in observations and are no longer inconsistent with those in models. Nature Publishing Group UK 2022-02-07 /pmc/articles/PMC8821642/ /pubmed/35132058 http://dx.doi.org/10.1038/s41467-022-28283-y Text en © Crown 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Smith, D. M.
Eade, R.
Andrews, M. B.
Ayres, H.
Clark, A.
Chripko, S.
Deser, C.
Dunstone, N. J.
García-Serrano, J.
Gastineau, G.
Graff, L. S.
Hardiman, S. C.
He, B.
Hermanson, L.
Jung, T.
Knight, J.
Levine, X.
Magnusdottir, G.
Manzini, E.
Matei, D.
Mori, M.
Msadek, R.
Ortega, P.
Peings, Y.
Scaife, A. A.
Screen, J. A.
Seabrook, M.
Semmler, T.
Sigmond, M.
Streffing, J.
Sun, L.
Walsh, A.
Robust but weak winter atmospheric circulation response to future Arctic sea ice loss
title Robust but weak winter atmospheric circulation response to future Arctic sea ice loss
title_full Robust but weak winter atmospheric circulation response to future Arctic sea ice loss
title_fullStr Robust but weak winter atmospheric circulation response to future Arctic sea ice loss
title_full_unstemmed Robust but weak winter atmospheric circulation response to future Arctic sea ice loss
title_short Robust but weak winter atmospheric circulation response to future Arctic sea ice loss
title_sort robust but weak winter atmospheric circulation response to future arctic sea ice loss
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821642/
https://www.ncbi.nlm.nih.gov/pubmed/35132058
http://dx.doi.org/10.1038/s41467-022-28283-y
work_keys_str_mv AT smithdm robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT eader robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT andrewsmb robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT ayresh robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT clarka robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT chripkos robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT deserc robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT dunstonenj robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT garciaserranoj robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT gastineaug robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT graffls robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT hardimansc robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT heb robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT hermansonl robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT jungt robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT knightj robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT levinex robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT magnusdottirg robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT manzinie robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT mateid robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT morim robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT msadekr robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT ortegap robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT peingsy robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT scaifeaa robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT screenja robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT seabrookm robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT semmlert robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT sigmondm robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT streffingj robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT sunl robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss
AT walsha robustbutweakwinteratmosphericcirculationresponsetofuturearcticseaiceloss