Cargando…
Inequality and inequity in network-based ranking and recommendation algorithms
Though algorithms promise many benefits including efficiency, objectivity and accuracy, they may also introduce or amplify biases. Here we study two well-known algorithms, namely PageRank and Who-to-Follow (WTF), and show to what extent their ranks produce inequality and inequity when applied to dir...
Autores principales: | Espín-Noboa, Lisette, Wagner, Claudia, Strohmaier, Markus, Karimi, Fariba |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821643/ https://www.ncbi.nlm.nih.gov/pubmed/35132072 http://dx.doi.org/10.1038/s41598-022-05434-1 |
Ejemplares similares
-
Homophily influences ranking of minorities in social networks
por: Karimi, Fariba, et al.
Publicado: (2018) -
JANUS: A hypothesis-driven Bayesian approach for understanding edge formation in attributed multigraphs
por: Espín-Noboa, Lisette, et al.
Publicado: (2017) -
Measuring disparate outcomes of content recommendation algorithms with distributional inequality metrics
por: Lazovich, Tomo, et al.
Publicado: (2022) -
Measuring disparate outcomes of content recommendation algorithms with distributional inequality metrics
por: Lazovich, Tomo, et al.
Publicado: (2023) -
A method for evaluating discoverability and navigability of recommendation algorithms
por: Lamprecht, Daniel, et al.
Publicado: (2017)