Cargando…
Position-Enhanced Multi-Head Self-Attention Based Bidirectional Gated Recurrent Unit for Aspect-Level Sentiment Classification
Aspect-level sentiment classification (ASC) is an interesting and challenging research task to identify the sentiment polarities of aspect words in sentences. Previous attention-based methods rarely consider the position information of aspect and contextual words. For an aspect word in a sentence, i...
Autores principales: | Li, Xianyong, Ding, Li, Du, Yajun, Fan, Yongquan, Shen, Fashan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822055/ https://www.ncbi.nlm.nih.gov/pubmed/35145460 http://dx.doi.org/10.3389/fpsyg.2021.799926 |
Ejemplares similares
-
Graph convolutional networks with hierarchical multi-head attention for aspect-level sentiment classification
por: Li, Xiaowen, et al.
Publicado: (2022) -
Text Sentiment Classification Based on BERT Embedding and Sliced Multi-Head Self-Attention Bi-GRU
por: Zhang, Xiangsen, et al.
Publicado: (2023) -
Students learning performance prediction based on feature extraction algorithm and attention-based bidirectional gated recurrent unit network
por: Yin, Chengxin, et al.
Publicado: (2023) -
Learn More from Context: Joint Modeling of Local and Global Attention for Aspect Sentiment Classification
por: Wang, Siyuan, et al.
Publicado: (2020) -
Imbalanced Text Sentiment Classification Based on Multi-Channel BLTCN-BLSTM Self-Attention
por: Cai, Tiantian, et al.
Publicado: (2023)