Cargando…

Baseball Pitchers’ Kinematic Sequences and Their Relationship to Elbow and Shoulder Torque Production

OBJECTIVES: Ball velocity is generated during the overhead baseball pitch via efficient force transmission up the kinetic chain, from the lower body up and outward to the throwing hand. The kinematic sequence, or the sequential timing pattern of peak angular velocities of body segments during a pitc...

Descripción completa

Detalles Bibliográficos
Autores principales: Scarborough, Donna Moxley, Linderman, Shannon E., Sanchez, Javier E., Berkson, Eric M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822081/
http://dx.doi.org/10.1177/2325967119S00429
_version_ 1784646536840347648
author Scarborough, Donna Moxley
Linderman, Shannon E.
Sanchez, Javier E.
Berkson, Eric M.
author_facet Scarborough, Donna Moxley
Linderman, Shannon E.
Sanchez, Javier E.
Berkson, Eric M.
author_sort Scarborough, Donna Moxley
collection PubMed
description OBJECTIVES: Ball velocity is generated during the overhead baseball pitch via efficient force transmission up the kinetic chain, from the lower body up and outward to the throwing hand. The kinematic sequence, or the sequential timing pattern of peak angular velocities of body segments during a pitch, provides insight to segment position and motion control that drives the kinetic chain (Putnam CA, 1993). Previous publications report an ideal kinematic sequence (KS) where the timing of each body segment’s peak angular velocity occurs in a proximal-to-distal (PDS) pattern resulting in greater ball velocity and reduction in throwing arm injury risk (Fortenbaugh D, et.al, 2009). A recent study revealed that baseball pitchers perform a variety of KSs (Scarborough DM et.al, 2018). There is no known investigation of the relationship of kinematic sequences and throwing arm joint torques. The purpose of this study was to 1) identify the number of different KSs performed by each pitcher and 2) compare elbow valgus and shoulder external rotation (ER) and extension (Ext) torques between the 3 primary KSs performed during the fastball pitch. METHODS: Fourteen collegiate baseball pitchers (20.57 ± 1.91 yr) underwent 3D biomechanical pitch analysis using 20 motion-capture Vicon MX™ cameras (360 Hz). A total of 119 fastball pitches with an average of 8.5 ± 2.71 pitches per player were analyzed. Elbow valgus and shoulder external rotation and extension torques were calculated. The timing of peak angular velocities for the pelvis, trunk, arm, forearm and hand body segments were recorded to generate each pitch’s KS. KSs were then divided into groups based on similarities to the ideal PDS pattern. ANCOVA statistical analyses were performed to compare joint torques across these KS groups with ball velocity as a covariate. RESULTS: A total of 13 different KSs were observed across the 14 pitchers resulting in an average of 3 ± 1.41 different KSs per pitcher. Three different primary KS groups were identified: (1) PDS group: with a KS closest to the ideal PDS pattern (2) the Altered Distal Upper Extremity segment: with the forearm peaking after the hand (the most common group) and (3) Altered Proximal Upper Extremity segment order with the arm segment peaking after the hand (2nd most common). Across these three primary KS patterns, statistically significant differences were noted for elbow valgus torque [F(62,2) = 8.785, ɳ2 = .221, p < 0.00], shoulder external rotation (ER) torque [F(62,2) = 14.127, ɳ2 = .313, p < 0.00] and shoulder extension (Ext) torque [F(62,2) = 13.237, ɳ2 = .299, p < 0.00] (Figure 1). CONCLUSION: Our findings demonstrate that collegiate baseball pitchers performed an average of 3 different kinematic sequence patterns during fastball pitching. This is the first study to demonstrate a relationship between KSs and elbow and shoulder torque production. As anticipated, the PDS KSs produced the least torque across the elbow and shoulder joints. Alterations in Distal Upper Extremity KS was most common and generated the greatest shoulder Ext torques. Alterations in the Proximal Upper Extremity KS demonstrated the greatest elbow valgus and shoulder ER. Further study of the influence of kinematic sequence on joint torques in the baseball pitch may provide insight into pitching injuries and injury avoidance programs.
format Online
Article
Text
id pubmed-8822081
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-88220812022-02-18 Baseball Pitchers’ Kinematic Sequences and Their Relationship to Elbow and Shoulder Torque Production Scarborough, Donna Moxley Linderman, Shannon E. Sanchez, Javier E. Berkson, Eric M. Orthop J Sports Med Article OBJECTIVES: Ball velocity is generated during the overhead baseball pitch via efficient force transmission up the kinetic chain, from the lower body up and outward to the throwing hand. The kinematic sequence, or the sequential timing pattern of peak angular velocities of body segments during a pitch, provides insight to segment position and motion control that drives the kinetic chain (Putnam CA, 1993). Previous publications report an ideal kinematic sequence (KS) where the timing of each body segment’s peak angular velocity occurs in a proximal-to-distal (PDS) pattern resulting in greater ball velocity and reduction in throwing arm injury risk (Fortenbaugh D, et.al, 2009). A recent study revealed that baseball pitchers perform a variety of KSs (Scarborough DM et.al, 2018). There is no known investigation of the relationship of kinematic sequences and throwing arm joint torques. The purpose of this study was to 1) identify the number of different KSs performed by each pitcher and 2) compare elbow valgus and shoulder external rotation (ER) and extension (Ext) torques between the 3 primary KSs performed during the fastball pitch. METHODS: Fourteen collegiate baseball pitchers (20.57 ± 1.91 yr) underwent 3D biomechanical pitch analysis using 20 motion-capture Vicon MX™ cameras (360 Hz). A total of 119 fastball pitches with an average of 8.5 ± 2.71 pitches per player were analyzed. Elbow valgus and shoulder external rotation and extension torques were calculated. The timing of peak angular velocities for the pelvis, trunk, arm, forearm and hand body segments were recorded to generate each pitch’s KS. KSs were then divided into groups based on similarities to the ideal PDS pattern. ANCOVA statistical analyses were performed to compare joint torques across these KS groups with ball velocity as a covariate. RESULTS: A total of 13 different KSs were observed across the 14 pitchers resulting in an average of 3 ± 1.41 different KSs per pitcher. Three different primary KS groups were identified: (1) PDS group: with a KS closest to the ideal PDS pattern (2) the Altered Distal Upper Extremity segment: with the forearm peaking after the hand (the most common group) and (3) Altered Proximal Upper Extremity segment order with the arm segment peaking after the hand (2nd most common). Across these three primary KS patterns, statistically significant differences were noted for elbow valgus torque [F(62,2) = 8.785, ɳ2 = .221, p < 0.00], shoulder external rotation (ER) torque [F(62,2) = 14.127, ɳ2 = .313, p < 0.00] and shoulder extension (Ext) torque [F(62,2) = 13.237, ɳ2 = .299, p < 0.00] (Figure 1). CONCLUSION: Our findings demonstrate that collegiate baseball pitchers performed an average of 3 different kinematic sequence patterns during fastball pitching. This is the first study to demonstrate a relationship between KSs and elbow and shoulder torque production. As anticipated, the PDS KSs produced the least torque across the elbow and shoulder joints. Alterations in Distal Upper Extremity KS was most common and generated the greatest shoulder Ext torques. Alterations in the Proximal Upper Extremity KS demonstrated the greatest elbow valgus and shoulder ER. Further study of the influence of kinematic sequence on joint torques in the baseball pitch may provide insight into pitching injuries and injury avoidance programs. SAGE Publications 2019-07-29 /pmc/articles/PMC8822081/ http://dx.doi.org/10.1177/2325967119S00429 Text en © The Author(s) 2019 https://creativecommons.org/licenses/by-nc-nd/4.0/This open-access article is published and distributed under the Creative Commons Attribution - NonCommercial - No Derivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ), which permits the noncommercial use, distribution, and reproduction of the article in any medium, provided the original author and source are credited. You may not alter, transform, or build upon this article without the permission of the Author(s). For article reuse guidelines, please visit SAGE’s website at http://www.sagepub.com/journals-permissions.
spellingShingle Article
Scarborough, Donna Moxley
Linderman, Shannon E.
Sanchez, Javier E.
Berkson, Eric M.
Baseball Pitchers’ Kinematic Sequences and Their Relationship to Elbow and Shoulder Torque Production
title Baseball Pitchers’ Kinematic Sequences and Their Relationship to Elbow and Shoulder Torque Production
title_full Baseball Pitchers’ Kinematic Sequences and Their Relationship to Elbow and Shoulder Torque Production
title_fullStr Baseball Pitchers’ Kinematic Sequences and Their Relationship to Elbow and Shoulder Torque Production
title_full_unstemmed Baseball Pitchers’ Kinematic Sequences and Their Relationship to Elbow and Shoulder Torque Production
title_short Baseball Pitchers’ Kinematic Sequences and Their Relationship to Elbow and Shoulder Torque Production
title_sort baseball pitchers’ kinematic sequences and their relationship to elbow and shoulder torque production
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822081/
http://dx.doi.org/10.1177/2325967119S00429
work_keys_str_mv AT scarboroughdonnamoxley baseballpitcherskinematicsequencesandtheirrelationshiptoelbowandshouldertorqueproduction
AT lindermanshannone baseballpitcherskinematicsequencesandtheirrelationshiptoelbowandshouldertorqueproduction
AT sanchezjaviere baseballpitcherskinematicsequencesandtheirrelationshiptoelbowandshouldertorqueproduction
AT berksonericm baseballpitcherskinematicsequencesandtheirrelationshiptoelbowandshouldertorqueproduction