Cargando…
Diagnosis of Polypoidal Choroidal Vasculopathy From Fluorescein Angiography Using Deep Learning
PURPOSE: To differentiate polypoidal choroidal vasculopathy (PCV) from choroidal neovascularization (CNV) and to determine the extent of PCV from fluorescein angiography (FA) using attention-based deep learning networks. METHODS: We build two deep learning networks for diagnosis of PCV using FA, one...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822364/ https://www.ncbi.nlm.nih.gov/pubmed/35113129 http://dx.doi.org/10.1167/tvst.11.2.6 |
Sumario: | PURPOSE: To differentiate polypoidal choroidal vasculopathy (PCV) from choroidal neovascularization (CNV) and to determine the extent of PCV from fluorescein angiography (FA) using attention-based deep learning networks. METHODS: We build two deep learning networks for diagnosis of PCV using FA, one for detection and one for segmentation. Attention-gated convolutional neural network (AG-CNN) differentiates PCV from other types of wet age-related macular degeneration. Gradient-weighted class activation map (Grad-CAM) is generated to highlight important regions in the image for making the prediction, which offers explainability of the network. Attention-gated recurrent neural network (AG-PCVNet) for spatiotemporal prediction is applied for segmentation of PCV. RESULTS: AG-CNN is validated with a dataset containing 167 FA sequences of PCV and 70 FA sequences of CNV. AG-CNN achieves a classification accuracy of 82.80% at image-level, and 86.21% at patient-level for PCV. Grad-CAM shows that regions contributing to decision-making have on average 21.91% agreement with pathological regions identified by experts. AG-PCVNet is validated with 56 PCV sequences from the EVEREST-I study and achieves a balanced accuracy of 81.132% and dice score of 0.54. CONCLUSIONS: The developed software provides a means of performing detection and segmentation of PCV on FA images for the first time. This study is a promising step in changing the diagnostic procedure of PCV and therefore improving the detection rate of PCV using FA alone. TRANSLATIONAL RELEVANCE: The developed deep learning system enables early diagnosis of PCV using FA to assist the physician in choosing the best treatment for optimal visual prognosis. |
---|