Cargando…
MSLibrarian: Optimized Predicted Spectral Libraries for Data-Independent Acquisition Proteomics
[Image: see text] Data-independent acquisition-mass spectrometry (DIA-MS) is the method of choice for deep, consistent, and accurate single-shot profiling in bottom-up proteomics. While classic workflows for targeted quantification from DIA-MS data require auxiliary data-dependent acquisition (DDA)...
Autores principales: | Isaksson, Marc, Karlsson, Christofer, Laurell, Thomas, Kirkeby, Agnete, Heusel, Moritz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822486/ https://www.ncbi.nlm.nih.gov/pubmed/35042333 http://dx.doi.org/10.1021/acs.jproteome.1c00796 |
Ejemplares similares
-
DIALib-QC an assessment tool for spectral libraries in data-independent acquisition proteomics
por: Midha, Mukul K., et al.
Publicado: (2020) -
In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics
por: Yang, Yi, et al.
Publicado: (2020) -
Use of Hybrid
Data-Dependent and -Independent Acquisition
Spectral Libraries Empowers Dual-Proteome Profiling
por: Willems, Patrick, et al.
Publicado: (2021) -
Calibr improves spectral library search for spectrum-centric analysis of data independent acquisition proteomics
por: Wang, Jen-Hung, et al.
Publicado: (2022) -
Stratification of follicular thyroid tumours using data‐independent acquisition proteomics and a comprehensive thyroid tissue spectral library
por: Sun, Yaoting, et al.
Publicado: (2022)