Cargando…
Sequence-based prediction of protein binding regions and drug–target interactions
Identifying drug–target interactions (DTIs) is important for drug discovery. However, searching all drug–target spaces poses a major bottleneck. Therefore, recently many deep learning models have been proposed to address this problem. However, the developers of these deep learning models have neglec...
Autores principales: | Lee, Ingoo, Nam, Hojung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822694/ https://www.ncbi.nlm.nih.gov/pubmed/35135622 http://dx.doi.org/10.1186/s13321-022-00584-w |
Ejemplares similares
-
DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences
por: Lee, Ingoo, et al.
Publicado: (2019) -
Identification of drug-target interaction by a random walk with restart method on an interactome network
por: Lee, Ingoo, et al.
Publicado: (2018) -
GraphATT-DTA: Attention-Based Novel Representation of Interaction to Predict Drug-Target Binding Affinity
por: Bae, Haelee, et al.
Publicado: (2022) -
Prediction of compound-target interactions of natural products using large-scale drug and protein information
por: Keum, Jongsoo, et al.
Publicado: (2016) -
Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-driven and Machine Learning Approaches
por: Kim, Hyunho, et al.
Publicado: (2021)