Cargando…
Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data
BACKGROUND: A key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately detect the number of cell types in the sample, which can be critical for downstream analyses such as cell type identification. Various scRNA-seq data clustering algorithms have been specifically designed to auto...
Autores principales: | Yu, Lijia, Cao, Yue, Yang, Jean Y. H., Yang, Pengyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822786/ https://www.ncbi.nlm.nih.gov/pubmed/35135612 http://dx.doi.org/10.1186/s13059-022-02622-0 |
Ejemplares similares
-
A benchmark study of simulation methods for single-cell RNA sequencing data
por: Cao, Yue, et al.
Publicado: (2021) -
Benchmarking of analytical combinations for COVID-19 outcome prediction using single-cell RNA sequencing data
por: Cao, Yue, et al.
Publicado: (2023) -
Ensemble deep learning of embeddings for clustering multimodal single-cell omics data
por: Yu, Lijia, et al.
Publicado: (2023) -
Benchmark and Parameter Sensitivity Analysis of Single-Cell RNA Sequencing Clustering Methods
por: Krzak, Monika, et al.
Publicado: (2019) -
Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis
por: Geddes, Thomas A., et al.
Publicado: (2019)