Cargando…
4252 Automated Fetal Brain Volumetry on Clinical Fetal MRI Using Convolutional Neural Network
OBJECTIVES/GOALS: We seek to develop an automated deep learning-based method for segmentation and volumetric quantification of the fetal brain on T2-weighted fetal MRIs. We will evaluate the performance of the algorithm by comparing it to gold standard manual segmentations. The method will be used t...
Autores principales: | Tran, Carol, Glenn, Orit, Hess, Christopher, Rauschecker, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822917/ http://dx.doi.org/10.1017/cts.2020.169 |
Ejemplares similares
-
4320 Acral, Head and Neck Melanoma Subtype Classification Performance Using A Convolutional Neural Network (CNN) Trained On a Public Dataset
por: Shah, Payal, et al.
Publicado: (2020) -
70329 Automated Lungs Segmentation and Airways Skeletonization from CT Scans in Patients with Cystic Fibrosis
por: Chong Chie, Juan A., et al.
Publicado: (2021) -
10227 A Framework for Bringing Secondary Analysis of EHR Data to Geographically Dispersed Clinician Scientists
por: McClay, James, et al.
Publicado: (2021) -
4420 Characterizing medical comorbidity prior to autism diagnosis in children before age two.
por: Failla, Michelle D, et al.
Publicado: (2020) -
4192 Decreasing Inappropriate STAT Image Ordering
por: Cui, Michael, et al.
Publicado: (2020)