Cargando…
4464 Effect of Surface Topography on In Vitro and Mechanical Performance of 3D Printed Titanium
OBJECTIVES/GOALS: The goal of the study is to understand how changing the surface roughness of 3D printed Titanium either by processing printed samples or artificially printing rough topography impacts the mechanical and biological properties of the Titanium. METHODS/STUDY POPULATION: Titanium dog b...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822939/ http://dx.doi.org/10.1017/cts.2020.386 |
_version_ | 1784646707619823616 |
---|---|
author | Abar, Bijan Kelly, Cambre Pham, Anh Allen, Nicholas Barber, Helena Kelly, Alexander Gall, Ken Adams, Samuel |
author_facet | Abar, Bijan Kelly, Cambre Pham, Anh Allen, Nicholas Barber, Helena Kelly, Alexander Gall, Ken Adams, Samuel |
author_sort | Abar, Bijan |
collection | PubMed |
description | OBJECTIVES/GOALS: The goal of the study is to understand how changing the surface roughness of 3D printed Titanium either by processing printed samples or artificially printing rough topography impacts the mechanical and biological properties of the Titanium. METHODS/STUDY POPULATION: Titanium dog bones and discs were printed via laser powder bed fusion. groups were defined as 1. polished, 2.blasted, 4.as built, 4.sprouts and 5.rough sprouts. Roughness was measured with line measurement using a confocal microscope. Tensile testing of dog bones produced stress strain curves. MC3T3 preosteoblast were seeded on discs. Samples were analyzed at 0, 2, and 4 weeks. A cell viability assay and confocal fluorescent microscopy assessed cell growth. Alkaline Phosphatase (ALP) assay and Quantitative Polymerase Chain Reaction (qPCR) examined cell differentiation. Extracellular matrix (ECM) was stained for collagen and calcium. Scanning Electron Microcopy (SEM) was done on sputter coated discs. RESULTS/ANTICIPATED RESULTS: Measured roughness defined by Rz, maximum peak to valley distance of the sample profile ranged from 2.6-65.1 µm. The addition of printed roughness in the sprouts and rough sprouts group significantly diminished ductility resulting in early strain to failure during tensile testing. Cells adhered and proliferated on discs regardless of roughness group. There was no statistical difference in ALP activity, but qPCR showed that rough groups (sprouts and rough sprouts) had diminished Osteocalcin gene expression at week 2 and 4. The ECM in the rough groups was more resistant to repeated washes and was more extensive with SEM. DISCUSSION/SIGNIFICANCE OF IMPACT: Printing roughness diminished mechanical properties without clear benefit to cell growth. Roughness features were on mesoscale, unlike samples in literature on microscale that increase cell activity. Printed topography may aid in implant fixation and not osseous integration as hypothesized. CONFLICT OF INTEREST DESCRIPTION: Dr. Samual Adams, Dr. Ken Gall and Cambre Kelly own stock and/or stock options in restor3d, Inc. |
format | Online Article Text |
id | pubmed-8822939 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cambridge University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-88229392022-02-18 4464 Effect of Surface Topography on In Vitro and Mechanical Performance of 3D Printed Titanium Abar, Bijan Kelly, Cambre Pham, Anh Allen, Nicholas Barber, Helena Kelly, Alexander Gall, Ken Adams, Samuel J Clin Transl Sci Translational Science, Policy, & Health Outcomes Science OBJECTIVES/GOALS: The goal of the study is to understand how changing the surface roughness of 3D printed Titanium either by processing printed samples or artificially printing rough topography impacts the mechanical and biological properties of the Titanium. METHODS/STUDY POPULATION: Titanium dog bones and discs were printed via laser powder bed fusion. groups were defined as 1. polished, 2.blasted, 4.as built, 4.sprouts and 5.rough sprouts. Roughness was measured with line measurement using a confocal microscope. Tensile testing of dog bones produced stress strain curves. MC3T3 preosteoblast were seeded on discs. Samples were analyzed at 0, 2, and 4 weeks. A cell viability assay and confocal fluorescent microscopy assessed cell growth. Alkaline Phosphatase (ALP) assay and Quantitative Polymerase Chain Reaction (qPCR) examined cell differentiation. Extracellular matrix (ECM) was stained for collagen and calcium. Scanning Electron Microcopy (SEM) was done on sputter coated discs. RESULTS/ANTICIPATED RESULTS: Measured roughness defined by Rz, maximum peak to valley distance of the sample profile ranged from 2.6-65.1 µm. The addition of printed roughness in the sprouts and rough sprouts group significantly diminished ductility resulting in early strain to failure during tensile testing. Cells adhered and proliferated on discs regardless of roughness group. There was no statistical difference in ALP activity, but qPCR showed that rough groups (sprouts and rough sprouts) had diminished Osteocalcin gene expression at week 2 and 4. The ECM in the rough groups was more resistant to repeated washes and was more extensive with SEM. DISCUSSION/SIGNIFICANCE OF IMPACT: Printing roughness diminished mechanical properties without clear benefit to cell growth. Roughness features were on mesoscale, unlike samples in literature on microscale that increase cell activity. Printed topography may aid in implant fixation and not osseous integration as hypothesized. CONFLICT OF INTEREST DESCRIPTION: Dr. Samual Adams, Dr. Ken Gall and Cambre Kelly own stock and/or stock options in restor3d, Inc. Cambridge University Press 2020-07-29 /pmc/articles/PMC8822939/ http://dx.doi.org/10.1017/cts.2020.386 Text en © The Association for Clinical and Translational Science 2020 https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Translational Science, Policy, & Health Outcomes Science Abar, Bijan Kelly, Cambre Pham, Anh Allen, Nicholas Barber, Helena Kelly, Alexander Gall, Ken Adams, Samuel 4464 Effect of Surface Topography on In Vitro and Mechanical Performance of 3D Printed Titanium |
title | 4464 Effect of Surface Topography on In Vitro and Mechanical Performance of 3D Printed Titanium |
title_full | 4464 Effect of Surface Topography on In Vitro and Mechanical Performance of 3D Printed Titanium |
title_fullStr | 4464 Effect of Surface Topography on In Vitro and Mechanical Performance of 3D Printed Titanium |
title_full_unstemmed | 4464 Effect of Surface Topography on In Vitro and Mechanical Performance of 3D Printed Titanium |
title_short | 4464 Effect of Surface Topography on In Vitro and Mechanical Performance of 3D Printed Titanium |
title_sort | 4464 effect of surface topography on in vitro and mechanical performance of 3d printed titanium |
topic | Translational Science, Policy, & Health Outcomes Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822939/ http://dx.doi.org/10.1017/cts.2020.386 |
work_keys_str_mv | AT abarbijan 4464effectofsurfacetopographyoninvitroandmechanicalperformanceof3dprintedtitanium AT kellycambre 4464effectofsurfacetopographyoninvitroandmechanicalperformanceof3dprintedtitanium AT phamanh 4464effectofsurfacetopographyoninvitroandmechanicalperformanceof3dprintedtitanium AT allennicholas 4464effectofsurfacetopographyoninvitroandmechanicalperformanceof3dprintedtitanium AT barberhelena 4464effectofsurfacetopographyoninvitroandmechanicalperformanceof3dprintedtitanium AT kellyalexander 4464effectofsurfacetopographyoninvitroandmechanicalperformanceof3dprintedtitanium AT gallken 4464effectofsurfacetopographyoninvitroandmechanicalperformanceof3dprintedtitanium AT adamssamuel 4464effectofsurfacetopographyoninvitroandmechanicalperformanceof3dprintedtitanium |